如何使用 Python 检测和识别车牌(附 Python 代码)

文章目录

    • 创建Python环境
    • 如何在您的计算机上安装Tesseract OCR?
    • 技术提升
    • 磨砺您的Python技能

车牌检测与识别技术用途广泛,可以用于道路系统、无票停车场、车辆门禁等。这项技术结合了计算机视觉和人工智能。

本文将使用Python创建一个车牌检测和识别程序。该程序对输入图像进行处理,检测和识别车牌,最后显示车牌字符,作为输出内容。

创建Python环境

要轻松地完成本教程,您需要熟悉Python基础知识。应先创建程序环境。

在开始编程之前,您需要在环境中安装几个库。打开任何Python IDE,创建一个Python文件。在终端上运行命令以安装相应的库。您应该在计算机上预先安装Python PIP。

  • OpenCV-Python: 您将使用这个库对输入图像进行预处理,并显示各个输出图像。
pip install OpenCV-Python
  • imutils: 您将使用这个库将原始输入图像裁剪成所需的宽度。
pip install imutils
  • pytesseract: 您将使用这个库提取车牌字符,并将它们转换成字符串。
pip install  pytesseract

pytesseract库依赖Tesseract OCR引擎进行字符识别。

如何在您的计算机上安装Tesseract OCR?

Tesseract OCR是一种可以识别语言字符的引擎。在使用pytesseract库之前,您应该在计算机上安装它。步骤如下:

1. 打开任何基于Chrome的浏览器。

2. 下载Tesseract OCR安装程序。

3. 运行安装程序,像安装其他程序一样安装它。

技术提升

技术要学会分享、交流,不建议闭门造车。一个人走的很快、一堆人可以走的更远。

本文来自技术群粉丝的分享、推荐,资料、代码、数据、技术交流提升,均可加交流群获取,群友已超过2000人,添加时切记的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、添加微信号:pythoner666,备注:来自 CSDN + Python
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:加群

准备好环境并安装tesseract OCR后,您就可以编写程序了。

导入库

首先导入在环境中安装的库。导入库让您可以在项目中调用和使用它们的函数。

  • import cv2

  • import imutils

  • import pytesseract

您需要以cv2形式导入OpenCV-Python库。使用与安装时相同的名称导入其他库。

获取输入

然后将pytesseract指向安装Tesseract引擎的位置。使用cv2.imread函数将汽车图像作为输入。将图像名称换成您在使用的那个图像的名称。将图像存储在项目所在的同一个文件夹中,以方便操作。

pytesseract.pytesseract.tesseract_cmd = 'C:\\Program Files\\Tesseract-OCR\\tesseract.exe'  
original_image = cv2.imread('image3.jpeg')  

左右滑动查看完整代码

您可以将下面的输入图像换成想要使用的图像。

预处理输入

将图像宽度调整为500像素,然后将图像转换成灰度图像,因为canny边缘检测函数只适用于灰度图像。最后,调用bilateralFilter函数以降低图像噪声。

original_image = imutils.resize(original_image, width=500 )  
gray_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY)  
gray_image = cv2.bilateralFilter(gray_image, 11, 17, 17)

左右滑动查看完整代码

在输入端检测车牌

检测车牌是确定汽车上有车牌字符的那部分的过程。

(1)执行边缘检测

先调用cv2.Canny函数,该函数可自动检测预处理图像上的边缘。

edged_image = cv2.Canny(gray_image, 30,200)

我们将通过这些边缘找到轮廓。

(2)寻找轮廓

调用cv2.findContours函数,并传递边缘图像的副本。这个函数将检测轮廓。使用cv2.drawContours函数,绘制原始图像上已检测的轮廓。最后,输出所有可见轮廓已绘制的原始图像。

contours, new = cv2.findContours(edged_image.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)  
img1 = original_image.copy()  
cv2.drawContours(img1, contours, -1, (0, 255, 0), 3)  
cv2.imshow("img1", img1)  

该程序绘制它在汽车图像上找到的所有轮廓。

找到轮廓后,您需要对它们进行筛选,以确定最佳候选轮廓。

(3)筛选轮廓

根据最小面积30对轮廓进行筛选。忽略小于这个面积的轮廓,因为它们不太可能是车牌轮廓。复制原始图像,在图像上绘制前30个轮廓。最后,显示图像。

contours = sorted(contours, key = cv2.contourArea, reverse = True)[:30]  
# stores the license plate contour  
screenCnt = None  
img2 = original_image.copy()  
  
# draws top 30 contours  
cv2.drawContours(img2, contours, -1, (0, 255, 0), 3)  
cv2.imshow("img2", img2)

现在轮廓数量比开始时要少。唯一绘制的轮廓是那些近似含有车牌的轮廓。

最后,您需要遍历已筛选的轮廓,确定哪一个是车牌。

(4)遍历前30个轮廓

创建遍历轮廓的for循环。寻找有四个角的轮廓,确定其周长和坐标。存储含有车牌的轮廓的图像。最后,在原始图像上绘制车牌轮廓并加以显示。

count = 0  
idx = 7  
  
**for** c **in** contours:  
    # approximate the license plate contour  
    contour_perimeter = cv2.arcLength(c, True)  
    approx = cv2.approxPolyDP(c, 0.018 * contour_perimeter, True)  
  
    # Look for contours with 4 corners  
    **if** len(approx) == 4:  
        screenCnt = approx  
  
        # find the coordinates of the license plate contour  
        x, y, w, h = cv2.boundingRect(c)  
        new_img = original_image [ y: y + h, x: x + w]  
  
        # stores the new image  
        cv2.imwrite('./'+str(idx)+'.png',new_img)  
        idx += 1  
        break  
  
# draws the license plate contour on original image  
cv2.drawContours(original_image , [screenCnt], -1, (0, 255, 0), 3)  
cv2.imshow("detected license plate", original_image )

循环之后,程序已识别出含有车牌的那个轮廓。

识别检测到的车牌

识别车牌意味着读取已裁剪车牌图像上的字符。加载之前存储的车牌图像并显示它。然后,调用pytesseract.image_to_string函数,传递已裁剪的车牌图像。这个函数将图像中的字符转换成字符串。

# filename of the cropped license plate image  
cropped_License_Plate = './7.png'  
cv2.imshow("cropped license plate", cv2.imread(cropped_License_Plate))  
  
# converts the license plate characters to string  
text = pytesseract.image_to_string(cropped_License_Plate, lang='eng')

左右滑动查看完整代码

已裁剪的车牌如下所示。上面的字符将是您稍后在屏幕上输出的内容。

检测并识别车牌之后,您就可以显示输出了。

显示输出

这是最后一步。您将提取的文本输出到屏幕上。该文本含有车牌字符。

print("License plate is:", text)  
cv2.waitKey(0)  
cv2.destroyAllWindows()

程序的预期输出应该如下图所示:

车牌文本可以在终端上看到。

磨砺您的Python技能

用Python检测和识别车牌是一个有意思的项目。它有挑战性,所以应该会帮助您学到关于Python的更多知识。

说到编程,实际运用是掌握一门语言的关键。为了锻炼技能,您需要开发有意思的项目。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/315.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】目录和文件的权限

Linux中的权限有什么作用Linux权限管理文件访问者的分类文件类型和访问权限(事物属性)**文件权限值的表示方法**文件访问权限的相关设置方法chmodchownchgrpumaskumask使用 sudo分配权限目录的权限Linux中的权限有什么作用 Linux下有两种用户&#xff1…

【C缺陷与陷阱】----语义“陷阱”

💯💯💯 本篇处理的是有关语义误解的问题:即程序员的本意是希望表示某种事物,而实际表示的却是另外一种事物。在本篇我们假定程序员对词法细节和语法细节的理解没有问题,因此着重讨论语义细节。导言&#xf…

SignalR+WebRTC技术实现音视频即时通讯功能

一、建立信令服务器 1、后台项目中新建一个对应的集线器类,取名VideoHub,并继承Hub类,Hub是SignalR的一个组件,它使用RPC接收从客户端发送来的消息,也能把消息发送给客户端。 2、VideoHub中定义一个静态的Concurrent…

java-正装照换底色小demo-技术分享

文章目录前言java-正装照换底色小demo-技术分享01 实现思路02 效果02::01 原图:02::02 执行单元测试:02::03 效果:03 编码实现前言 如果您觉得有用的话,记得给博主点个赞,评论,收藏一键三连啊,写作不易啊^ _ ^。   而且听说点赞…

js逆向爬取某音乐网站某歌手的歌曲

js逆向爬取某音乐网站某歌手的歌曲一、分析网站1、案例介绍2、寻找列表页Ajax入口(1)页面展示图。(2)寻找部分歌曲信息Ajax的token。(3)寻找歌曲链接(4)获取歌曲名称和id信息3、寻找…

XXE漏洞复现

目录XML基础概念XML数据格式DTD基础定义DTD作用分类DTD实体实体的分类DTD元素XXE漏洞介绍实操如何探测xxe漏洞XML基础 概念 什么是XML 是一种可扩展标记语言 (Extensible Markup Language, XML) ,标准通用标记语言的子集,可以用来标记数据、定义数据类型…

30个题型+代码(冲刺2023蓝桥杯)(中)

2023.3.13~4.13持续更新 目录 🍎注意 🌼前言 🌼十,KMP(留坑) 🌼十一,Trie(留坑) 🌼十二,BFS 👊(一)1562. 微博转发…

OpenAI 发布GPT-4——全网抢先体验

OpenAI 发布GPT-4 最近 OpenAI 犹如开挂一般,上周才刚刚推出GPT-3.5-Turbo API,今天凌晨再次祭出GPT-4这个目前最先进的多模态预训练大模型。与上一代GPT3.5相比,GPT-4最大的飞跃是增加了识图能力,并且回答准确性也得到显著提高。…

写给20、21级学生的话

写给20、21级学生的话前言一、关于招聘变招生,你怎么看?二、对于即将实习/已经实习的学生,你有什么建议?1.学习方面2.提升方面三、思想成年真的很重要前言 最近,有一些同学遇到的实习问题,我统一回复下&…

第十二届蓝桥杯省赛详解

试题A:空间 1B是8位,32位二进制数占用4B空间,1MB2^10KB2^20B 那么可以存放32位二进制数的个数为256*2^20*8/3267108864 试题B:卡片 分析:因为数据只有2021,所以直接模拟即可 结果为:3181&…

MySQL基础------sql指令1.0(查询操作->select)

目录 前言: 单表查询 1.查询当前所在数据库 2.查询整个表数据 3.查询某字段 4.条件查询 5.单行处理函数(聚合函数) 6.查询时给字段取别名 7.模糊查询 8.查询结果去除重复项 9.排序(升序和降序) 10. 分组查询 1…

Linux 如何使用 git | 新建仓库 | git 三板斧

文章目录 专栏导读 一、如何安装 git 二、注册码云账号 三、新建仓库 配置仓库信息 四、克隆远端仓库到本地 五、git 三板斧 1. 三板斧第一招:git add 2. 三板斧第二招:git commit 解决首次 git commit 失败的问题 配置机器信息 3. 三…

最新!Windows 11 更新将整合 AI 技术

微软MVP实验室研究员张雅琪(阿法兔)微软最有价值专家(MVP),毕业于外交学院和香港大学,IT 技术社区创始人,中关村互联网金融研究院兼职研究员,多次受邀在微软 Reactor 进行公开演讲&a…

电子工程师必须掌握的硬件测试仪器,你确定你都掌握了?

目录示波器示例1:测量示波器自带的标准方波信号输出表笔认识屏幕刻度认识波形上下/左右移动上下/左右刻度参数调整通道1的功能界面捕获信号设置Menu菜单触发方式触发电平Cursor按钮捕捉波形HLEP按钮参考资料频谱分析仪器信号发生器示波器 示例1:测量示波…

STM32F103R8T6 SPWM实现正弦波输出

前言 PWM合成正弦波,原理什么的不详细说了,概括一下就是 PWM有效面积的积分 正弦波的有效面积。PWM的频率越快,细分的越多,锯齿也就越不明显。 做法是:首先利用正弦波取点软件,取点1000个,生…

求职(怎么才算精通JAVA开发)

在找工作的的时候,有时候我们需要对自己的技术水平做一个评估。特别是Java工程师,我们该怎么去表达自己的能力和正确认识自己所处的技术水平呢。技术一般的人,一般都不敢说自己精通JAVA,因为你说了精通JAVA几乎就给了面试官一个可以随便往死里问的理由了。很多不自信的一般…

《ChatGPT是怎样炼成的》

ChatGPT 在全世界范围内风靡一时,我现在每天都会使用 ChatGPT 帮我回答几个问题,甚至有的时候在一天内我和它对话的时间比和正常人类对话还要多,因为它确实“法力无边,功能强大”。 ChatGPT 可以帮助我解读程序,做翻译…

在 4G 内存的机器上,申请 8G 内存会怎么样?

在 4GB 物理内存的机器上,申请 8G 内存会怎么样? 这个问题在没有前置条件下,就说出答案就是耍流氓。这个问题要考虑三个前置条件: 操作系统是 32 位的,还是 64 位的?申请完 8G 内存后会不会被使用&#x…

cmd命令教程

小提示: 在本文中,我将向您展示可以在 Windows 命令行上使用的 40 个命令 温馨提示:在本教程中学习使用适用于 Windows 10 和 CMD 网络命令的最常见基本 CMD 命令及其语法和示例 文章目录为什么命令提示符有用一、cmd是什么?如何在…

一年经验年初被裁面试1月有余无果,还遭前阿里面试官狂问八股,人麻了

最近接到一粉丝投稿:年初被裁员,在家躺平了6个月,然后想着学习下再去面试,现在面试了1个月有余,无果,天天打游戏到半夜,根本无法静下心来学习。下面是他这些天面试经常会被问到的一些问题&#…