[每周一更]-(第82期):认识自然处理语言(NLP)

在这里插入图片描述

GPT的大火,带起了行业内大模型的爆发;国内外都开始拥有或者研发自己的大模型,下边我们从NLP来进一步深入了解大模型、AI。

一、什么是NLP?

自然语言处理(英语:Natural Language Processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言处理包括多方面和步骤,基本有认知、理解、生成等部分。

自然语言认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言。

自然语言处理要研制表示语言能力和语言应用的模型, 建立计算框架来实现并完善语言模型,并根据语言模型设计各种实用系统及探讨这些系统的评测技术。

自然语言处理(NLP)是计算机科学与语言学交叉的领域,旨在使计算机能够理解、解释和生成人类语言。
NLP涵盖了多个任务,包括文本分析、语音识别、机器翻译等,是实现智能对话和语言应用的基础。
在当今信息时代,NLP技术已成为推动智能搜索、虚拟助手和社交媒体分析的核心。
NLP借鉴了语言学、计算机科学和统计学的方法,通过模拟人类语言能力来处理和分析文本。

二、NLP的关键技术清单

  • 分词(Tokenization): 将文本分割成单词或子词的过程,是NLP任务的基础步骤。

  • 词性标注(Part-of-Speech Tagging): 标注文本中每个单词的词性,例如名词、动词、形容词等。

  • 命名实体识别(Named Entity Recognition, NER): 识别文本中的具有特定意义的实体,如人名、地名、组织机构等。

  • 词干提取与词形还原(Stemming and Lemmatization): 将单词转换为其基本形式,有助于减少词汇的复杂性。

  • 语法分析(Syntax Parsing): 分析句子的结构,确定单词之间的关系,形成语法树。

  • 语义分析(Semantic Analysis): 理解文本的含义,包括句子和段落级别的语义。

  • 情感分析(Sentiment Analysis): 分析文本中的情感色彩,判断文本的情感倾向,如正面、负面或中性。

  • 主题建模(Topic Modeling): 从文本中识别主题或话题,揭示文本的隐藏结构。

  • 文本分类(Text Classification): 将文本分配到预定义的类别或标签中,是监督学习任务的一种。

  • 信息检索(Information Retrieval): 从大量文本中检索与用户查询相关的信息。

  • 问答系统(Question-Answering Systems): 根据用户提出的问题从文本中提取答案。

  • 机器翻译(Machine Translation): 将一种语言的文本翻译成另一种语言。

  • 语音识别(Speech Recognition): 将音频信号转换为文本。

  • 生成式模型(Generative Models): 利用概率模型生成新的文本,如语言模型。

  • 注意力机制(Attention Mechanism): 提高模型对文本中不同部分的关注程度,有助于处理长文本和改进性能。

  • 迁移学习(Transfer Learning): 在一个任务上训练好的模型迁移到另一个相关任务,提高模型的泛化能力。

  • 大规模预训练模型(Large-scale Pretrained Models): 通过在大规模数据上进行预训练,然后在特定任务上进行微调,取得显著的性能提升。

中文NLP一般流程

在这里插入图片描述

三、NLP的常用应用领域

1、 文本分析
NLP在文本挖掘、信息检索和文本摘要等方面有着广泛应用。
2、 语音识别
语音到文本技术使得语音指令和语音搜索成为可能。
3、 机器翻译
NLP在翻译系统中的应用使得跨语言交流更加便捷。
4、 情感分析
分析文本中的情感色彩,应用于社交媒体舆情分析和产品评论。
5、 问答系统
智能问答系统利用NLP技术回答用户提出的自然语言问题。
6、 聊天机器人
NLP技术支持开发具有自然对话能力的聊天机器人。
7、 文本生成
生成自然语言文本,包括文章、故事和诗歌。

四、列举NLP和ChatGPT区别

自然语言处理(NLP)是一门涉及计算机科学、人工智能和语言学等多学科的交叉领域,目标是使计算机能够理解、解释、生成和处理人类语言。NLP的任务涵盖了诸如文本分析、语音识别、机器翻译、情感分析等各种领域。
ChatGPT 是由 OpenAI 开发的一种基于大规模预训练的语言模型,属于NLP领域中的一部分。与传统的NLP任务不同,ChatGPT 主要用于生成人类类似的自然语言响应,使其能够进行对话和提供有关多个主题的信息。

主要区别包括:

任务目标:
  • NLP: 涉及各种任务,包括文本分析、语音识别、情感分析等,旨在使计算机理解和处理自然语言。
  • ChatGPT: 主要用于生成自然语言响应,实现对话和提供信息。
模型结构:
  • NLP: 使用各种传统的神经网络结构、深度学习架构,例如卷积神经网络(CNN)、循环神经网络(RNN)、长短时记忆网络(LSTM)、变压器(Transformer)等。
  • ChatGPT: 基于Transformer架构,通过预训练和微调生成大规模语言模型,如GPT-3。
应用领域:
  • NLP: 应用广泛,覆盖多个领域,包括文本处理、语音处理、翻译、信息检索等。
  • ChatGPT: 主要用于对话和生成自然语言响应,适用于聊天机器人、智能助手等应用。
训练数据:
  • NLP: 需要大规模的多样性数据进行训练,以覆盖不同领域和语境。
  • ChatGPT: 通过大规模的互联网文本进行预训练,然后通过微调来适应特定任务或应用。

总体而言,ChatGPT是NLP领域中的一种特定应用,旨在生成人类类似的自然语言响应,可以用于构建对话型系统和聊天机器人。

五、大模型、AI和NLP的关系

在这里插入图片描述

NLP是AI的一部分: 自然语言处理是人工智能的一个分支,专注于使计算机能够理解、解释、生成和处理人类语言。NLP的目标是让计算机能够像人类一样处理和理解自然语言。

大型模型在NLP中的应用: 近年来,大型预训练模型在NLP任务中取得了显著的成就。这些模型,如GPT(Generative Pre-trained Transformer)系列、BERT(Bidirectional Encoder Representations from Transformers)等,通过在大规模语料库上进行预训练,能够学到丰富的语言表示。这些模型在多个NLP任务中,如文本分类、命名实体识别、机器翻译等方面取得了领先的性能。

AI驱动NLP技术的发展: AI技术的不断发展推动了NLP领域的进步。随着深度学习方法的兴起,特别是在NLP中的成功应用,研究人员能够建立更复杂、更有效的模型来解决自然语言理解的问题。

NLP在AI应用中的角色: NLP技术在各种AI应用中扮演着关键的角色。例如,在智能助手、聊天机器人、语音识别、文本翻译等应用中,NLP技术被广泛使用。通过NLP,计算机能够理解用户输入的自然语言,从而更智能地响应和执行任务。

AI与大型模型的相互影响: 大型模型的发展推动了AI的前进,同时AI的需求也促使对更大规模、更复杂模型的研究。这种相互影响使得NLP领域在大模型和AI技术的推动下取得了革命性的进步。

自然语言处理 (Natural Language Processing) 是人工智能(AI)的一个子领域。**自然语言处理是研究在人与人交互中以及在人与计算机交互中的语言问题的一门学科。**为了建设和完善语言模型,自然语言处理建立计算框架,提出相应的方法来不断的完善设计各种实用系统,并探讨这些实用系统的评测方法。

参考文献

  • https://aws.amazon.com/cn/what-is/nlp/
  • wiki 自然语言处理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/313950.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【python】进阶--->MySQL数据库(一)

一、mysql数据库 关系型数据库 : 一些相关的表和其他数据库对象的集合。 表是由行和列组成。列包含一组命名的属性(也称为字段)。 行包含一组记录,行和列的交集称为数据项(也叫字段值)。 数据库(database) : 存储数据的仓库,本质上就是一个文…

业务向——基于多多进宝平台的CPS

业务向——基于多多进宝平台的CPS 导读小试牛刀商品活动推广商品详情获取频道推广订单获取及和用户绑定小结 导读 多多进宝是拼多多的开放平台,为广大商家和推广者提供了一个机会,通过推广拼多多的商品来实现收益。多多进宝的CPS(按效果付费…

强化学习应用(一):基于Q-learning的无人机物流路径规划研究(提供Python代码)

一、Q-learning简介 Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个价值函数来指导智能体在环境中做出决策,以最大化累积奖励。 Q-learning算法的核心思想是通过不断更新一个称为Q值的…

【MYSQL】MYSQL 的学习教程(十三)之 MySQL的加锁规则

1. MySQL 加锁全局视角 MySQL 分成了 Server 层和存储引擎两部分,每当执行一个查询时,Server 层负责生成执行计划,然后交给存储引擎去执行。其整个过程可以这样描述: Server 层向 Innodb 获取到扫描区间的第 1 条记录Innodb 通过…

SGL-110型定时限过流继电器 额定电流5A 额定电压220V 交直流通用 板前接线

系列型号 LGY-110零序过电压继电器; LGL-110零序过电压继电器; LGL-110/AC零序过电压继电器; LGL-110零序过电流继电器 板前接线 1 应用 LGL-110 型零序过电流继电器用作线路和电力设备的零序过电流保护。 LGY-110 型零序过…

WSL2-Ubuntu20.04-配置

WSL2-Ubuntu20.04-配置 安装wsl2安装Ubuntu20.04安装anacondaWSL2可视化(VcXsrv) 安装wsl2 wsl --install wsl -l -v # 版本查看 默认的都是 wsl2 (如果是wsl1 就自行升级 wsl --update) 官方教程 安装Ubuntu20.04 安装wsl2之后…

vcruntime140.dll已加载,但找不到入口点的处理方法分享

当遇到错误提示“vcruntime140.dll已加载,但找不到入口点”时,很多人可能会感到困惑,不知道如何去处理这个问题。不过没有必要紧张,在这里我会为大家详细解释 vcruntime140.dll 文件是什么,并指导大家如何高效地解决 v…

kafka除了作为消息队列还能做什么?

Kafka 最初是为大规模处理日志而构建的。它可以保留消息直到过期,并让各个消费者按照自己的节奏提取消息。 与其之前的竞品不同,Kafka 不仅仅是一个消息队列,它还是一个适用于各种情况的开源事件流平台。 让我们回顾一下流行的 Kafka 用例。 …

Win10子系统Ubuntu实战(一)

在 Windows 10 中安装 Ubuntu 子系统(Windows Subsystem for Linux,简称 WSL)有几个主要的用途和好处:Linux 环境的支持、跨平台开发、命令行工具、测试和验证、教育用途。总体而言,WSL 提供了一种将 Windows 和 Linux…

OpenAI 自带的检索功能好用吗?定量测评带你深度了解!

向量数据库的劲敌来了?又有一批赛道创业公司要倒下? …… 这是 OpenAI 上线 Assistant 检索功能后,技术圈传出的部分声音。原因在于,此功能可以为用户提供基于知识库问答的 RAG(检索增强生成) 能力。而此前…

Css样式制作图形倒影

该CSS样式是WebKit(主要应用于Safari和其他基于WebKit的浏览器)的特定前缀属性,用于实现元素内容的反射效果。具体解释如下: -webkit-box-reflect: 定义了一个盒反射效果,仅在支持WebKit的浏览器中生效。 below 15px&a…

springIoc依赖注入循环依赖三级缓存

springIoc的理解,原理和实现 控制反转: 理论思想,原来的对象是由使用者来进行控制,有了spring之后,可以把整个对象交给spring来帮我们进行管理 依赖注入DI: 依赖注入,把对应的属性的值注入到…

矩阵的秩-

一、定义、理解 非零子式的最高阶数。 如何理解?什么叫做非零子式的最高阶数??? 举个例子:有一个5阶矩阵 首先什么叫子式? 例如2阶子式就是,任取某两行某两列组成的行列式,就叫…

【发票识别】支持pdf、ofd、图片格式的发票

背景 为了能够满足识别各种发票的功能,特地开发了当前发票识别的功能,当前的功能支持pdf、ofd、图片格式的发票识别,使用到的技术包括文本提取匹配、ocr识别和信息提取等相关的技术,用到机器学习和深度学习的相关技术。 体验 体…

论文精读:Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models

Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models Status: Reading Author: Chunrui Han, Haoran Wei, Jianjian Sun, Jinrong Yang, Jinyue Chen, Liang Zhao, Lingyu Kong, Xiangyu Zhang, Zheng Ge Institution: 中国科学院大学, 华中科技大学, 旷…

虚幻UE 材质-材质图层、材质图层混合

学习材质图层和材质图层混合的使用,便于节点扫盲。 文章目录 前言一、材质图层混合二、使用步骤总结 前言 材质混合我们之前用Bridge的插件进行混合过 而此次我们的材质混合使用UE自带的材质图层和材质图层混合来实现 一、材质图层混合 材质图层混合是一种允许将…

Vant4在Vue3.3中如何按需导入组件和样式

前言 最近我在Vue 3.3的项目中对Vant4做按需导入时,尽管按照Vant4的官方指南进行操作,但样式仍然无法正确加载。经过深入研究和多篇文章的比较,我终于找到了在Vue3中如何正确的按需导入Vant 4组件和样式的方法。由于Vue3.3和Vant4相对较新&am…

考古学家 - 华为OD统一考试

OD统一考试 分值: 200分 题解: Java / Python / C++ 题目描述 有一个考古学家发现一个石碑,但是很可惜发现时其已经断成多段。 原地发现N个断口整齐的石碑碎片,为了破解石碑内容,考古学家希望有程序能帮忙计算复原后的石碑文字组合数,你能帮忙吗? 备注: 如果存在石碑…

国产六核CPU商显板,三屏异显,米尔基于全志D9360开发板

芯驰D9-Pro 自主可控、安全可信的高性能商显方案 采用国产CPU:集成了6个ARM Cortex-A551.6GHz 高性能CPU和1个ARM Cortex-R5800MHz; 高性能的高安全HSM安全的处理器,支持TRNG、AES、RSA、SHA、SM2/3/4/9; 它包含100GFLOPS 3D G…

CRLF漏洞靶场记录

搭建 利用 docker 搭建 vulhub 靶场 git clone https://github.com/vulhub/vulhub.git 进入 /vulhub/nginx/insecure-configuration 目录 启动前关闭现有的 8080、8081、8082 端口服务,避免端口占用 docker-compose up -d 进入容器 docker exec -it insecure-…