【二十】【动态规划】879. 盈利计划、377. 组合总和 Ⅳ、96. 不同的二叉搜索树 ,三道题目深度解析

动态规划

动态规划就像是解决问题的一种策略,它可以帮助我们更高效地找到问题的解决方案。这个策略的核心思想就是将问题分解为一系列的小问题,并将每个小问题的解保存起来。这样,当我们需要解决原始问题的时候,我们就可以直接利用已经计算好的小问题的解,而不需要重复计算。

动态规划与数学归纳法思想上十分相似。

数学归纳法:

  1. 基础步骤(base case):首先证明命题在最小的基础情况下成立。通常这是一个较简单的情况,可以直接验证命题是否成立。

  2. 归纳步骤(inductive step):假设命题在某个情况下成立,然后证明在下一个情况下也成立。这个证明可以通过推理推断出结论或使用一些已知的规律来得到。

通过反复迭代归纳步骤,我们可以推导出命题在所有情况下成立的结论。

动态规划:

  1. 状态表示:

  2. 状态转移方程:

  3. 初始化:

  4. 填表顺序:

  5. 返回值:

数学归纳法的基础步骤相当于动态规划中初始化步骤。

数学归纳法的归纳步骤相当于动态规划中推导状态转移方程。

动态规划的思想和数学归纳法思想类似。

在动态规划中,首先得到状态在最小的基础情况下的值,然后通过状态转移方程,得到下一个状态的值,反复迭代,最终得到我们期望的状态下的值。

接下来我们通过三道例题,深入理解动态规划思想,以及实现动态规划的具体步骤。

879. 盈利计划 - 力扣(LeetCode)

题目解析

状态表示

这个问题本质上是,

  1. 挑选出一些工作作为一个集合,这个集合满足某些要求,解决某些问题。而背包问题就是挑选出一些物品作为一个集合,这个集合满足某些要求,解决某些问题。

  2. 挑选出来的工作不可以无限选取,所以属于二维01背包问题。

背包问题的状态表示是,

定义dp[i][j]表示从前i个物品中挑选,总体积不超过j,所有选法中,所能达到的最大价值。

定义dp[i][j]表示从前i个物品中挑选,总体积恰好为j,所有选法中,所能达到的最大价值。

我们根据背包问题的状态表示,定义出该问题的状态表示。

因此我们可以定义,dp[i][j][k]表示,从前i个工作中挑选,总需人数不超过j,总利润不少于k,总盈利计划个数。

状态转移方程

状态转移方程通常都是根据最后一个位置的具体状况进行分类讨论。

  1. 如果不选择第i个工作, 此时只能从前i-1个工作中挑选出集合,此时dp[i][j][k]=dp[i-1][j][k]。

  2. 如果选择第i个工作, 此时第i个工作需要的人数为group[i-1],产生的利润为profit[i-1],本来总人数不能超过j,选取第i个工作后,总人数不能超过j-group[i-1],本来总利润需要不少于k,选取第i个工作后,总利润需要不少于k-profit[i-1],因此dp[i][j][k]=dp[i-1][j-group[i-1]][k-profit[i-1]]。表示在前i-1个工作中挑选集合的集合个数,每一个集合都加入第i个工作,此时的集合个数为dp[i][j][k]。此时还需要判断j-guoup[i-1],k-profit[i-1]是否小于0,的情况。小于0就越界了。

    1. 如果j-group[i-1]<0, 表示第i个工作需要的人数就大于了j,此时dp[i][j][k]=0。

    2. 如果j-group[i-1]>=0, 说明此时可以完成第i个工作,dp[i][j][k]=dp[i-1][j-group[i-1][k-profit[i-1]],还需要考虑k-profit[i-1]的正负性。

      1. 如果k-profit[i-1]<0, 表示第i个工作产生的利润就可以满足最低需求利润,所以再从前面工作中挑选,不需要考虑它的利润条件,即产生的利润大于等于0即可。此时dp[i][j][k]=dp[i-1][j-group[i-1]][0]。

      2. 如果k-profit[i-1]>=0, 此时dp[i][j][k]=dp[i-1][j-group[i-1]][k-profit[i-1]]。

综上所述,将上述情况进行合并和简化,得到状态转移方程为,

 
        dp[i][j][k] = dp[i - 1][j][k];
        if (j - group[i - 1] >= 0)
            dp[i][j][k] = (dp[i][j][k]+dp[i - 1][j - group[i - 1]]
                             [max(0, k - profit[i - 1])])%MOD;

MOD=1e9+7,因为题目说得到的数可能很大,需要对MOD取余,所以两个数每相加,就对MOD取余。

初始化

根据状态转移方程,我们知道,推导(i,j,k)位置的状态需要用到(i-1,j,k)位置的状态,if判断保证j-group[i-1]一定不会小于0,dp[i - 1][j - group[i - 1]][max(0, k - profit[i - 1])],所以这个状态中只需要考虑(i-1)。所以我们需要初始化第一行,推导第一行的时候会发生越界的情况,此时没有前驱状态。

i==0,表示不选工作,人数不超过j,集合利润不少于k,集合个数,此时只有dp[0][j][0]=1,其他都为0。

故初始化为,

 
        for (int j = 0; j <= n; j++) {
            dp[0][j][0] = 1;
        }

填表顺序

根据状态转移方程,我们在推导(i,j,k)位置的状态时,需要用到(i-1,j,k)(i-1,j-group[i-1],k-profit[i-1])位置的状态。这些状态不会越界,初始化保证了他们不会越界。

  1. 固定i, i需要从小到大变化,当推导(i,j,k)位置状态时,(i-1,,)位置状态已经得到,所以j,k的变化可以从小到大,也可以从大到小。

  2. 固定j, j的变化需要从小到大,又因为需要用到(i-1,j,k)位置的状态,所以i的变化需要从小到大,此时k的变化可以从小到大也可以从大到小。

  3. 固定k, k的变化需要从小到大,又因为需要用到(i-1, j,k)位置的状态,所以i的变化需要从小到大,此时j的变化可以从小到大,也可以从大到小。

返回值

状态表示为dp[i][j][k]表示,从前i个工作中挑选,总需人数不超过j,总利润不少于k,总盈利计划个数。

结合题目意思,我们需要在前m个工作中挑选,总需人数不超过n,总利润不少于minProfit,总盈利计划个数。

返回dp[m][n][minProfit]

(m表示工作个数)

代码实现

 
class Solution {
public:
    int profitableSchemes(int n, int minProfit, vector<int>& group,
                          vector<int>& profit) {
        int m = group.size();
        int MOD = 1e9 + 7;
        vector<vector<vector<int>>> dp(
            m + 1, vector<vector<int>>(n + 1, vector<int>(minProfit + 1)));

        for (int j = 0; j <= n; j++) {
            dp[0][j][0] = 1;
        }
        for (int i = 1; i <= m; i++) {
            for (int j = 0; j <= n; j++) {
                for (int k = 0; k <= minProfit; k++) {
                    dp[i][j][k] = dp[i - 1][j][k];
                    if (j - group[i - 1] >= 0)
                        dp[i][j][k] = (dp[i][j][k]+dp[i - 1][j - group[i - 1]]
                                         [max(0, k - profit[i - 1])])%MOD;
                }
            }
        }
        return dp[m][n][minProfit];
    }
};

377. 组合总和 Ⅳ - 力扣(LeetCode)

题目解析

因此我们应该换一种思路,尝试正向解决这道问题。

在正向推导过程我们发现了重复子问题,求元素和为target一共有多少种排列方法数,等价于求元素和为target-第一个位置上的元素值,一共有多少种排列方法数,然后再考虑第一个位置上所有情况即可。

因此我们可以定义状态表示为dp[i]元素和为i的所有排列方法数。

状态表示

定义dp[i]元素和为i的所有排列方法数。

状态转移方程

  1. 如果有排列,

    1. 第一个位置为nums[0], 此时dp[i]=dp[i-nums[0]]。

    2. 第一个位置为nums[1], 此时dp[i]=dp[i-nums[1]]。

    3. 第一个位置为nums[2], 此时dp[i]=dp[i-nums[2]]。

    4. .......

  2. 如果没排列, dp[0]=1。

综上所述,状态转移方程为,dp[i]=dp[i-nums[0]]+dp[i-nums[1]]+..........

如果i-nums[0]<0,此时不存在。同时dp[0]=1。

 
            for(auto j:nums){
                if(j<=i){
                    dp[i]+=dp[i-j];
                }
            }

初始化

根据状态转移方程,dp[i]+=,所以每个位置都需要初始化为0。而没有排列的时候,dp[0]=1。

填表顺序

根据状态转移方程,推导i位置状态需要用到i-j位置的状态,所以i的变化需要从小到大。

返回值

状态表示为,定义dp[i]元素和为i的所有排列方法数。

结合题目意思,我们需要返回dp[target]

代码实现

 
class Solution {
public:
    int combinationSum4(vector<int>& nums, int target) {
        vector<double>dp(target+1);
        dp[0]=1;
        for(int i=1;i<=target;i++){
            for(auto j:nums){
                if(j<=i){
                    dp[i]+=dp[i-j];
                }
            }
        }
        return dp[target];
    }
};

96. 不同的二叉搜索树 - 力扣(LeetCode)

题目解析

状态表示

定义dp[i]表示节点数为i,组成的二叉搜索树种类数。

状态转移方程

  1. 当节点数至少为3时,假设j作为根节点。 此时左边是1~(j-1),一共有(j-1)-1+1=j-1 个数, 右边是(j+1)~i,一共有i-(j+1)+1=i-j 个数,

      状态转移方程为,

     
    for(int j=1;j<=i;j++){
            dp[i]+=dp[j-1]*dp[i-j];
        }
  2. 当节点数为2时, dp[2]=2。

  3. 当节点数为1时, dp[1]=1。

  4. 当节点数为0时, dp[0]=1。此时表示没有节点,二叉搜索树的种类数,空也算是一种。表示左孩子为0时,种类数为右孩子种类数乘以1,或者右孩子为0时,种类数为左孩子种类数乘以1。

初始化

根据状态转移方程,dp[i]+=,所以每个状态先初始化为0。

填表顺序

根据状态转移方程,推导i位置状态时需要用到j-1,和i-j位置的状态,所以i的变化需要从小到大。

返回值

状态表示为,定义dp[i]表示节点数为i,组成的二叉搜索树种类数。

结合题目意思,我们需要返回dp[n]

代码实现

 
class Solution {
public:
    int numTrees(int n) {
        vector<int>dp(n+1);
        if(n==0||n==1) return 1;
        else if(n==2) return 2;
        dp[0]=1;
        dp[1]=1;
        dp[2]=2;
        for(int i=3;i<=n;i++){
            for(int j=1;j<=i;j++){
                dp[i]+=dp[j-1]*dp[i-j];
            }
        }
        return dp[n];
        
    }
};

结尾

今天我们学习了动态规划的思想,动态规划思想和数学归纳法思想有一些类似,动态规划在模拟数学归纳法的过程,已知一个最简单的基础解,通过得到前项与后项的推导关系,由这个最简单的基础解,我们可以一步一步推导出我们希望得到的那个解,把我们得到的解依次存放在dp数组中,dp数组中对应的状态,就像是数列里面的每一项。最后感谢您阅读我的文章,对于动态规划系列,我会一直更新,如果您觉得内容有帮助,可以点赞加关注,以快速阅读最新文章。

最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。

同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。

谢谢您的支持,期待与您在下一篇文章中再次相遇!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/313867.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Python】数据可视化--基于TMDB_5000_Movie数据集

一、数据准备 tmdb_5000_movie数据集下载 二、数据预处理 观察数据集合情况 import pandas as pd import ast import warnings warnings.filterwarnings(ignore) # 加载数据集 df pd.read_csv(tmdb_5000_movies.csv) # 查看数据集信息 print(df.info()) 由于原数据集包含的…

2024 年 DevOps 会是什么样子?

过去两年的特点是科技公司大幅裁员。随着亚马逊、Meta 和谷歌等公司的大规模裁员成为各大头条新闻&#xff0c;科技行业在疫情期间释放资本并实现强劲增长&#xff0c;这种“花钱、快速增长”的思维模式正在发生普遍转变。游戏的名称是在支出上更加保守&#xff0c;这种心态将推…

flask web服务器:运行在云服务器上的最简单的web服务器

上期文章我们分享了flask的基础知识以及如何安装flask&#xff0c;当你安装完成flask后&#xff0c;我们就可以打造自己的web服务器了。 首先我们打印最简单的hello world,并在浏览器中显示 from flask import Flask app Flask(__name__)app.route(/) def index():return he…

C++_虚函数表

虚函数表 介绍源码运行结果笔记扩充函数名联编静态联编动态联编 介绍 1.编译器通过指针或引用调用虚函数&#xff0c;不会立即生成函数调用指令&#xff0c;而是用 二级函数指针 代替 1.1确定真实类型 1.2找到虚函数表从而找到入口地址 1.3根据入口地址调用函数(PS:俗称 函数指…

SQL-数据类型

&#x1f389;欢迎您来到我的MySQL基础复习专栏 ☆* o(≧▽≦)o *☆哈喽~我是小小恶斯法克&#x1f379; ✨博客主页&#xff1a;小小恶斯法克的博客 &#x1f388;该系列文章专栏&#xff1a;重拾MySQL &#x1f379;文章作者技术和水平很有限&#xff0c;如果文中出现错误&am…

数据结构初阶之插入排序与希尔排序详解

个人主页&#xff1a;点我进入主页 专栏分类&#xff1a;C语言初阶 C语言程序设计————KTV C语言小游戏 C语言进阶 C语言刷题 数据结构初阶 Linux 欢迎大家点赞&#xff0c;评论&#xff0c;收藏。 一起努力,共赴大厂。 目录 一.前言 二.插入排序 …

代码随想录 Leetcode203. 移除链表元素

题目&#xff1a; 代码(首刷看解析 2024年1月11日&#xff09;&#xff1a; class Solution { public:ListNode* removeElements(ListNode* head, int val) {if(headnullptr) return nullptr;ListNode* BeforeHead new ListNode(0,head);ListNode* temp BeforeHead;while(te…

iOS 调试工具CocoaDebug

1、使用pod工具在项目里面添加CocoaDebug的SDK。 platform :ios, 11.0target ShopService doproject ShopServiceuse_frameworks!pod CocoaDebug, :configurations > [Debug]end2、之后就可以在项目里面看到效果了 APP上显示的是一个黑色背景的小圆圈。 上面39表示调用了39…

跨平台的文件传输协议@windows端服务器的配置@smb协议共享方案@ftp服务器设置

文章目录 abstractrefs ftp server下面是核心步骤FAQ smb server设置方法右键设置共享文件夹查看所有已经共享的文件夹停止某个文件的共享 共享文件夹的访问控制补充匿名访问问题协议相关信息参考android客户端推荐FAQ不同用户文件无法访问 比较和总结其他用户访问smb服务器共享…

[蓝桥杯学习] ST表

RMQ问题 ST 表 用状态 s[i][j] 记录区间长度为 2^j 的长度的区间的最大值 所以状态转移方程就是 st[i][j] max( st[i][j-1] , st[i(1 << (j-1))][j-1] ) 注意状态转移的方向&#xff0c;保证区间合法性&#xff08;i2^j 不能超过数组大小&#xff09; 写完这些后&am…

知道IP怎么反查域名?这几个方法一查一个准!

知道网络IP怎么反查出真实域名来&#xff1f;给大家分享几个我常用的方法&#xff0c;就算你不懂技术你都能查得出来&#xff01; 一、fofa 这是一个白帽黑客非常喜欢用的社工平台&#xff0c;只要你输入IP就能查到很多背后的信息。 传送门&#xff1a;https://fofa.info 二…

ELAU MC-4/11/22/400伺服驱动器

在一帧中每一行的选择时间是均等的。假设一帧的扫描行数为N&#xff0c;扫描时间为1&#xff0c;那一行所占有的选择时间为一帧时间的1/N。在液晶显示的驱动方法中把这个值&#xff0c;即一帧行扫描数的倒数称为液晶显示驱动的占空比(duty)&#xff0c;用d表示。在同等电压下&a…

响应式Web开发项目教程(HTML5+CSS3+Bootstrap)第2版 例3-1 CSS3过渡

代码 <!doctype html> <html> <head> <meta charset"utf-8"> <title>CSS3 过渡</title> <style> /*显示*/ .box {width: 100px;height: 100px;background-color: #eee;/*透明度*/opacity: 1;/*过渡*/transition: 3s; } /…

高性能mysql 第三版 读书笔记

MySQL中的tmp_table_size和max_heap_table_size|极客笔记 mysql占用内存过高调优方法_tmp_table_size过大阻塞-CSDN博客 查看mysql分配的内存 mysql查看内存利用状态_mob6454cc6d81c9的技术博客_51CTO博客 https://www.cnblogs.com/stronger-xsw/p/13632505.html

刚买的助听器就弄丢了,不想白配,快来看看这8大助听器防丢小技巧

我们知道助听器可以让听损人士重新听到美妙的声音和享受沟通的乐趣。但是&#xff0c;助听器也是一种很贵的物品&#xff0c;如果不小心弄丢了&#xff0c;就会让人心痛不已。 更有甚者&#xff0c;有些人因为害怕丢失助听器&#xff0c;而不敢佩戴助听器&#xff0c;错过了听力…

气象能见度监测站的应用介绍

【TH-NJD10】能见度是反映大气透明度的一个重要指标&#xff0c;对于航空、航海、道路交通等领域具有重要意义。 一、气象能见度监测站的应用 交通气象服务 气象能见度监测站在交通气象服务中发挥着重要作用。在高速公路、机场、港口等交通枢纽&#xff0c;能见度监测数据对于交…

【算法与数据结构】70、LeetCode爬楼梯

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析&#xff1a;因为每次可以爬1阶或者2阶台阶&#xff0c;若想到达第i阶&#xff0c;则有两种情况&#xff1a;在第i-…

【Golang】IEEE754标准二进制字符串转为浮点类型

IEEE754介绍 IEEE 754是一种标准&#xff0c;用于表示和执行浮点数运算的方法。在这个标准中&#xff0c;单精度浮点数使用32位二进制表示&#xff0c;分为三个部分&#xff1a;符号位、指数位和尾数位。 符号位(s)用一个位来表示数的正负&#xff0c;0表示正数&#xff0c;1表…

CentOS查看修改时间

经常玩docker的朋友应该都知道&#xff0c;有很多的镜像运行起来后&#xff0c;发现容器里的系统时间不对&#xff0c;一般是晚被北京时间8个小时&#xff08;不一定&#xff09;。 这里合理怀疑是镜像给的初始时区是世界标准时间&#xff08;也叫协调世界时间&#xff09;。 有…

Kafka配置Kerberos安全认证及与Java程序集成

Background 本文主要介绍在 Kafka 中如何配置 Kerberos 认证&#xff0c;以及 java 使用 JAAS 来进行 Kerberos 认证连接。本文演示为单机版。 所用软件版本 查看 Kerberos 版本命令&#xff1a;klist -V 软件名称版本jdk1.8.0_202kafka2.12-2.2.1kerberos1.15.1 1、Kerberos …