I/O多路复用+高性能网络模式

前言:
本篇文章将介绍客户端-服务端之间从最简单的Socket模型到I/O多路复用的模式演变过程,并介绍Reactor和Proactor两种高性能网络模式

文章内容摘自:小林Coding
I/O多路复用+高性能网络模式

.

  • 传统Socket模型
  • 传统Socket模型的性能瓶颈
  • 多进程模型
  • 多线程模型
  • I/O多路复用
    • select/poll
    • epoll
      • 水平触发和边缘触发
  • Reactor模式和Proactor模式

传统Socket模型

在这里插入图片描述
服务端流程:
1.创建Socket套接字
2.使用bind函数绑定ip地址和端口
3.listen函数监听端口让套接字变成可以被动连接的状态,此时服务端会被阻塞,等待连接的到来
4.当连接到来时,应用程序通过accept socket接口从全连接队列中拿出一个已经连接好的socket进行网络通信
5.使用recv/send函数进行数据的收发
6.当不使用服务端时,使用close函数关闭服务端
客户端流程:
1.创建Socket套接字
2.可以选择用bind函数去绑定端口,也可以暂时不绑定.如果没有用Bind函数去指定端口的话,后续客户端会在调用Connect()函数时随机的从内核参数指定的范围内选择一个随机数作为自己的端口,流程如下:

1.判断这个随机产生的端口是不是有相同的四元组,如果没有,则直接使用这个
端口

2.如果这个端口有相同的四元组,判断是不是开启了参数tcp_tw_reuse,如果没
开启这个参数,则重新在内核参数指定范围内再选择一个端口,重复判断过程

3.如果开启了tcp_tw_reuse参数,则需要判断相同的四元组连接是不是已经进入
time_wait状态并且时间超过了1秒,如果是,则可以无缝复用这个链接,如果
不是,则重新在内核参数指定范围内再选择一个端口,重复判断过程.

3.用Connect()函数和服务端进行连接
4.用read/write函数进行数据的读写


传统Socket模型的性能瓶颈

传统Socket模型采用的是阻塞同步的网络模式,这里先给大家普及一下
阻塞,非阻塞,同步,异步的概念.

阻塞:当一个任务发出一个请求之后,它需要等待这个请求被正确处理完毕并返回处理结果之后,该任务才能继续执行.

非阻塞:当一个任务发出一个请求之后,它不需要等待这个请求被处理完就可以继续往后执行,并通过轮询和回调的方式来获取请求的处理结果.

同步:同步的关键词是等待,只要有等待的过程,就算同步,比如说:任务需要等待请求的处理结果之后才能继续执行,那么这就是一个同步的过程,所以说阻塞一般和同步挂钩,但是非阻塞也可以跟同步搭配,非阻塞虽然不用等待任务被处理完毕,但是可能仍然要等待数据从内核态被拷贝的用户态的一个拷贝过程.

异步:没有等待的过程,既不需要等待请求是否被处理完毕,也不需要等待数据拷贝.


所以对于传统的Socket的阻塞同步网络模式来说,服务端正在处理某一个客户端的网络 I/O,或者因为读写操作被阻塞住的话,那么服务端就没有办法和其他客户端正常连接,所以大大限制了服务端的性能

多进程模型

主进程负责监听连接,一旦连接完成,accept()函数会返回一个已经连接好的socket,主进程此时会通过fork函数创建若干个子进程.父进程和子进程之间通过返回值来区分.

因为fork函数几乎可以复制父进程的所有内容,所以连同把父进程的文件描述符也复制过来了,子进程可以通过文件描述符并使用已经连接好的Socket和客户端进行通信
在这里插入图片描述
值得注意的是,使用多进程模型,需要在使用结束时及时使用wait函数和waitpid函数获取子进程的终止状态并且释放资源,避免它们成为僵尸进程白白占用系统资源


多线程模型

多线程模型由线程池来实现,主要的目的就是避免线程频繁的创建和销毁带来的性能开销.

线程池的工作逻辑:

1. 创建一个固定大小的线程池,并初始化一定数量的工作线程
2. 工作线程按照循环的方式,从请求队列中拿出请求并做出处理
3. 当新请求到来时,主线程会把请求(Socket)放入请求队列中
5. 使用互斥锁,信号量等工具,让工作线程安全的从请求队列中取出请求
6. 工作线程处理好请求之后,会再次回到线程池中,再次以循环的方式等待是否
有请求可以处理
6.服务器停止工作时,主线程通知工作线程释放资源,安全关闭.

在这里插入图片描述
不管是多进程模型,还是多线程模型,如果一个TCP连接就要分配一个进程/线程的话,那么如果有10W个TCP连接就要分配10W个进程/线程,所以多线程模型也不是完美的

普通的线程池工作逻辑
线程池中的所有线程都是工作线程,工作线程中的空闲线程会从请求队列中取出请求并且执行
半同步/半反应堆线程(模拟Proactor模式)
除了工作线程之外,有专门负责监听和任务调度的线程存在,例如主线程
当请求到来时,主线程或者其他负责调度的线程会接受请求,然后根据任务类型分发给其他的工作线程.

1.主线程充当异步线程,监听所有socket上的事件,步骤如下:

2.当请求连接到来时,主线程接收并获得新连接好的socket

3.将该socket注册到epoll上,然后用epoll_wait等待事件到来

4.如果监听的socket有读写事件发生时,主线程从socket上接收数据,并封装成请求插入到请求队列中

I/O多路复用

I/O多路复用的思想就是让一个进程可以去维护多个Socket,而不是像多进程/线程模型那样,一个进程/线程只能对应一个Socket

其中select/poll/epoll是系统内核提供给用户态的多路复用系统调用函数,进程可以通过这些函数从内核中获取多个事件

select/poll

select和poll实现多路复用的方式很类似
select是把所有已连接的Socket放进一个文件描述符集合之中,然后把整个文件描述符集合拷贝到内核,由内核来检查是否有事件发生,内核会以遍历的方式遍历整个文件描述符集合然后把有事件发生的Socket标记为可读或可写,然后再把整个文件描述符集合拷贝回用户态,再次遍历文件描述符集合找到可读或可写的Socket做出处理

所以select需要经历两次遍历文件描述符集合+两次文件描述符集合的拷贝

而poll跟select很相似,只不过poll没有用Bitsmap来存储文件描述符集合,而是用动态数组+链表的方式存储文件描述符集合的,所以二者都是使用线性结构来存储Socket集合的.


epoll

1.epoll使用红黑树来跟踪存储所有待检测的文件描述符的,因为红黑树是一个高效的数据结构,所以它只需要O(logn)就可以完成插入查询删除操作,而select和poll就没有这样高效的数据结构,正是因为epoll中内核有了红黑树来存储socket,所以他不需要像select/poll那样,在操作时将整个文件描述符集合全部拷贝到内核,而是只需要传入一个待检测的文件描述符即可.

2.epoll采用事件驱动机制,在内核中维护了一个链表来存储所有的就绪事件,当监测的Socket上有事件发生时,内核会通过回调函数将事件加入就绪事件队列中.当用户调用epoll_wait函数获取事件时,只会返回有事件发生的文件描述符个数,而不会像select/poll那样遍历整个文件描述符集合

epoll相关函数

epoll_create()  //创建一个epoll对象

epoll_ctl()  //将待检测的socket注册到epoll上

epoll_wait()  //等待时间的到来

加入epoll之后的服务端流程

1.创建Socket套接字

2.使用bind函数绑定ip地址和端口

3.用listen监听端口

4.将服务端socket通过epoll_ctl注册到epoll上

5.epoll_wait等待连接到来,当连接到来时,用accept函数获取已经连接
好的socket

6.将已经连接好的socket注册到epoll上

7.使用epoll_wait函数等待事件的到来

水平触发和边缘触发

边缘触发
当监测的Socket上有可读事件发生时,服务端会在epoll_wait上唤醒一次,即使进程没有主动调用read函数进行读操作,服务端也仅仅会唤醒一次,并且尽可能一次性的将内核缓冲区的数据读完

因为边缘触发只有一次通知,所以服务端会尽可能的多读写数据,以免浪费了读写数据的机会,并且是以循环的方式在文件描述符上读写数据的,所以文件描述符此时必须是非阻塞的,否则就会被阻塞在读写函数上,程序就没办法继续进行下去了.

水平触发
当被监控的Socket上有可读事件发生时,服务端会不断的从epoll_wait上唤醒,并读取内核缓冲区的数据直到内核缓冲区的数据被读完

当内核通知文件描述符是可读写时,接下来还要继续检查它的状态,确保它依然是可读或者可写的,所以没必要像边缘触发那样一次性读写过多的数据.


Reactor模式和Proactor模式

Reactor
是一种非阻塞同步网络模式,它感知的就绪的网络事件,当感知到有事件发生时,应用进程会主动的使用write/read函数进行读写操作,将socket缓冲区中的数据读入应用进程的内存之中,这个过程是同步的,读完之后再进行数据的处理.

Proactor
是一种异步网络模式,它感知的是已完成的网络事件,当发出一个异步请求时,需要提供缓冲区的地址,然后系统内核就会帮助我们完成读写操作,这里的读写操作全部都是由操作系统来完成的,而不是像Reactor那样是由应用进程主动调用read/write函数完成的,在操作系统完成读写操作之后,交给应用进程处理

总结
Reactor模式可以理解为:
当事件到来时,操作系统通知应用进程,由应用进程处理
Proactor模式可以理解为:
当事件到来时,操作系统处理,处理完了通知应用进程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/31262.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SpringCloud Alibaba入门5之使用OpenFegin调用服务

我们继续在上一章的基础上进行开发 SpringCloud Alibaba入门4之nacos注册中心管理_qinxun2008081的博客-CSDN博客 Feign是一种声明式、模板化的HTTP客户端。使用Feign,可以做到声明式调用。Feign是在RestTemplate和Ribbon的基础上进一步封装,使用RestT…

链路追踪SkyWalking整合项目以及数据持久化

1. 微服务整合SkyWalking 1.1 通过jar包方式整合 首先我们将一个简单的springboot服务打成jar包。 将其上传到Linux服务器中。 准备一个启动脚本,脚本内容如下: #!/bin/sh # SkyWalking Agent配置 export SW_AGENT_NAMEskywalking‐test #Agent名字,一…

【MQTT 5.0】协议 ——发布订阅模式、Qos、keepalive、连接认证、消息结构

一、前言1.1 MQTT 协议概述1.2 MQTT规范 二、MQTT 协议基本概念2.1 发布/订阅模式2.11 MQTT 发布/订阅模式2.12 MQTT 发布/订阅中的消息路由2.13 MQTT 与 HTTP 对比2.14 MQTT 与消息队列 2.2 服务质量:QoS2.21 QoS 0 最多分发一次2.22 QoS1 至少分发一次2.23 QoS 2 …

Windows远程桌面(mstsc)不能复制粘贴的解决办法

最近突然发现Windows远程桌面(mstsc)不能在远程端和本地端之间自由的复制和粘贴了,这还是非常影响使用体验的;因此记录一下解决方法,以便后续再遇到此类问题时查看如何解决; 文章目录 一、背景二、解决办法2.1 方法1 重启rdpclip.…

Java并发编程学习16-线程池的使用(中)

线程池的使用(中) 引言1. 配置 ThreadPoolExecutor1.1 线程的创建与销毁1.2 管理队列任务1.3 饱和策略1.4 线程工厂1.5 定制 ThreadPoolExecutor 2. 扩展 ThreadPoolExecutor总结 引言 上篇分析了在使用任务执行框架时需要注意的各种情况,并…

OpenCV 笔记_1

笔记_1 文章目录 笔记_1Mat类数据类型读取Mat类支持的运算图像读取,显示,保存imread 图像读取namedWindow 创建要显示的窗口imshow 窗口显示imwrite 图像保存 视频加载与摄像头的使用VideoCapture 加载视频或摄像头get 获取属性VideoWriter 保存视频 图像…

【五子棋实战】第6章 调用接口进行联调

【五子棋实战】第6章 调用接口进行联调 Ajax调用接口 调用五子棋接口 点击优化 尾声 更多待开发的功能 Ajax调用接口 引入Jquery&#xff0c;使用JQ封装的ajax&#xff0c;demo如下&#xff1a; <script src"jquery-3.5.0.min.js"></script> <…

Python 操作 Excel 全攻略 | 包括读取、写入、表格操作、图像输出和字体设置

文章目录 前言Python 操作 Excel 教程1. Excel 文件的读取与写入2. Excel 表格的操作2.1 插入和删除行和列2.2 遍历表格中的单元格并修改值 3. 图像的输出3.1 输出柱状图 4. 字体的设置4.1 设置单元格的字体大小和颜色4.2 设置单元格的加粗和斜体4.3 设置单元格的边框和填充颜色…

CSS弹性布局常用设置

目录 一、单位元素 二、弹性容器 三、常用属性 三、项目实战效果 一、单位元素 vm 1vm 为视口的1% vh 视口高的1% vmin 参照长边 vmax 参照长边 rem 等比缩放 需要设置最外层盒子html设置vw 根字号html的--- font-- 1vm 去适配 初始化 //初始化*{padding: 0;margin: 0}//…

【Python GUI编程系列 01】安装python pycharm 和 pyside6

Python GUI编程系列 01 安装python pycharm 和 pyside61、安装python2、安装pycharm3、安装 pyside6 安装python pycharm 和 pyside6 本系列使用python3 pycharmpyside6 来进行python gui设计&#xff0c;首先我们来配置编程环境 PS&#xff1a;为了减少复杂程度&#xff0c;本…

MySQL:事务

事务 在介绍事务之前&#xff0c;我们先来了解一个案例&#xff1a; 在一个买票的软件中&#xff0c;当客户端A检查还有一张票时&#xff0c;将票卖点&#xff0c;但是还没有更新数据库&#xff0c;客户端B检查了票数&#xff0c;发现大于0&#xff0c;于是又卖掉了一张票。然…

【五子棋实战】第3章 算法包装成第三方接口

【五子棋实战】第3章 算法包装成第三方接口 使用Flask开放接口 ## 定义接口输入 ## 开放接口、跨域配置、数据解析 数据预处理 ## 数据检查与异常捕获 ## 预处理数据 ## 定义接口输出 开启接口 继续学习下一篇实战&#xff01; 我们在上一章实现了博弈树负值极大alpha…

Web服务器群集:部署LNMP平台

目录 一、理论 1.LNMP平台 2.Nginx服务基础 3.Nginx访问控制 4.Nginx虚拟主机 5.PHP 二、实验 1.LNMP架构DISCUZ论坛应用 三、问题 1.没有规则可以创建“default”需要的目标“build”。 2.nginx重启报错 3.yum安装提示报错 4.配置文件报错 5.PHP页面无法打开 四…

菲涅尔圆孔衍射matlab完整程序分享

根据惠更斯 &#xff0d; 菲涅耳原理&#xff0c;光的衍射是光束内部的次波之间的相干叠加&#xff0c;衍射光波场的光振动符合菲涅耳积分公式。但直接运用菲涅耳积分公式计算衍射光场是很困难的。对于夫琅和费衍射(远场衍射)&#xff0c;在光源和接收屏距离衍射屏均为无穷远的…

【C++】内存管理、new和delete操作类型、operator new和operator delete函数、new和delete的实现原理

文章目录 1.C/C内存管理2.C语言的内存管理方式3.C内存管理方式3.1 new和delete操作内置类型3.2 new和delete操作自定义类型 4.operator new与operator delete函数5.new和delete的实现原理5.1内置类型5.2 自定义类型 1.C/C内存管理 在C/C中&#xff0c;内存管理是程序员负责管理…

TCP 学习笔记

Win R 打开控制台输入CMD 打开小黑窗&#xff0c; 输入ipconfig 查询本机地址 “外网IP是全世界唯一的IP地址,仅分配给一个网络设备。而内网IP是由路由器分配给每一部内部使用的IP地址,而内网的所有用户都是通过同一个外网IP地址进行上网的,而内网的IP地址每个人的都不一样…

SQL 基础语句

SQL 基础语句 DDL Data Definition Language 数据定义语言创建 create删除 drop修改 alter清空 truncate show tables ; --查看所有表&#xff1a; drop database db1; --删除数据库 create database db1 default character set utf8; --创建数据库 use databas…

十大基础算法

一、选择排序 过程简单描述&#xff1a; 首先&#xff0c;找到数组中最小的那个元素&#xff0c;其次&#xff0c;将它和数组的第一个元素交换位置(如果第一个元素就是最小元素那么它就和自己交换)。其次&#xff0c;在剩下的元素中找到最小的元素&#xff0c;将它与数组的第二…

C++【STL】之priority_queue学习

优先级队列 优先级队列priority_queue也是STL库中容器适配器的一种&#xff0c;常用于进行数据优先级的处理&#xff0c;说到这儿是不是发现有些熟悉&#xff0c;没错它和我们之前讲解的堆本质上就是一个东西&#xff0c;底层都是数组存储的完全二叉树&#xff0c;它在STL库中…

设计模式(二十二):行为型之备忘录模式

设计模式系列文章 设计模式(一)&#xff1a;创建型之单例模式 设计模式(二、三)&#xff1a;创建型之工厂方法和抽象工厂模式 设计模式(四)&#xff1a;创建型之原型模式 设计模式(五)&#xff1a;创建型之建造者模式 设计模式(六)&#xff1a;结构型之代理模式 设计模式…