pytorch11:模型加载与保存、finetune迁移训练

在这里插入图片描述

目录

  • 一、模型加载与保存
    • 1.1 序列化与反序列化概念
    • 1.2 pytorch中的序列化与反序列化
    • 1.3 模型保存的两种方法
    • 1.4 模型加载两种方法
  • 二、断点训练
    • 2.1 断点保存代码
    • 2.2 断点恢复代码
  • 三、finetune
    • 3.1 迁移学习
    • 3.2 模型的迁移学习
    • 3.2 模型微调步骤
      • 3.2.1 模型微调步骤
      • 3.2.2 模型微调训练方法
    • 3.3 迁移训练实验

一、模型加载与保存

1.1 序列化与反序列化概念

序列化是将数据结构或对象转换为可以存储或传输的格式的过程,而反序列化则是将存储或传输的数据重新转换为数据结构或对象的过程。
在计算机科学中,序列化和反序列化通常用于数据持久化、网络传输和进程间通信等场景。以下是对序列化和反序列化的详细解读:

  1. 序列化:
    • 序列化的过程将数据结构或对象转换为字节流或其他格式,以便在存储或传输时能够被保存下来或发送出去。这通常涉及将数据结构中的字段和属性转换为二进制码或文本格式,以便能够被存储在文件中或通过网络传输。
    • 序列化的结果可以是二进制数据、JSON、XML等格式,不同的数据类型和应用场景可能采用不同的序列化格式。
    • 序列化的过程可以包括将对象进行扁平化、编码、压缩等操作,以便提高存储和传输的效率和安全性。
  2. 反序列化:
    • 反序列化的过程是将序列化后的数据重新转换为原始的数据结构或对象,使得在存储或传输后能够恢复原来的数据格式和内容。
    • 反序列化的过程需要根据序列化时采用的格式和规则,对序列化后的数据进行解码、解压缩等操作,最终还原为原始的数据结构或对象。
    • 反序列化的过程需要确保数据的完整性和正确性,以及适当地处理可能存在的异常和错误情况。
      在实际应用中,序列化和反序列化广泛应用于各种领域,如数据库持久化、分布式系统通信、缓存存储、远程过程调用等。常见的序列化和反序列化技术包括JSON、XML、Protocol Buffers、Thrift等,它们在不同的场景和需求下有着不同的优势和适用性。

通过序列化技术,将内存中的数据存储到硬盘,在需要使用的时候通过反序列化的方法转化成可读取数据。
在这里插入图片描述

1.2 pytorch中的序列化与反序列化

  1. torch.save(序列化):用于保存模型
    主要参数:
    • obj:对象
    • f:输出路径
  2. torch.load(反序列化):用于加载模型
    主要参数
    • f:文件路径
    • map_location:指定存放位置, cpu or gpu

1.3 模型保存的两种方法

方法1:保存整个Module模型
torch.save(net, path)
方法2:保存模型参数parameter
state_dict = net.state_dict()
torch.save(state_dict , path)

使用方法1会比较耗时耗费资源,通常我们会使用方法2,只保存模型训练过程中的参数。

代码实现:

import torch
import numpy as np
import torch.nn as nn


class LeNet2(nn.Module):
    def __init__(self, classes):
        super(LeNet2, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 6, 5),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(6, 16, 5),
            nn.ReLU(),
            nn.MaxPool2d(2, 2)
        )
        self.classifier = nn.Sequential(
            nn.Linear(16*5*5, 120),
            nn.ReLU(),
            nn.Linear(120, 84),
            nn.ReLU(),
            nn.Linear(84, classes)
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size()[0], -1)
        x = self.classifier(x)
        return x

    def initialize(self):
        for p in self.parameters():
            p.data.fill_(2024111)


net = LeNet2(classes=2024)

# "训练"
print("训练前: ", net.features[0].weight[0, ...])
net.initialize()  #模型模型训练参数改变
print("训练后: ", net.features[0].weight[0, ...])

path_model = "./model.pkl"
path_state_dict = "./model_state_dict.pkl"

# 保存整个模型
torch.save(net, path_model)

# 保存模型参数
net_state_dict = net.state_dict()
torch.save(net_state_dict, path_state_dict)

输出结果:
在这里插入图片描述
在这里插入图片描述

1.4 模型加载两种方法

方法1:加载模型
代码实现:

# ================================== load net ===========================
flag = 1
# flag = 0
if flag:

    path_model = "./model.pkl"
    net_load = torch.load(path_model)

    print(net_load)

输出结果:
在这里插入图片描述
在这里插入图片描述

方法2: 加载参数
代码实现:

# ================================== load state_dict ===========================

flag = 1
# flag = 0
if flag:
    path_state_dict = "./model_state_dict.pkl"
    state_dict_load = torch.load(path_state_dict)
    print(state_dict_load.keys())

输出结果:
将保存的参数名称打印出来;
在这里插入图片描述
方法3:将参数加载到新的模型当中

# ================================== update state_dict ===========================
flag = 1
# flag = 0
if flag:

    net_new = LeNet2(classes=2019)

    print("加载前: ", net_new.features[0].weight[0, ...])
    net_new.load_state_dict(state_dict_load)
    print("加载后: ", net_new.features[0].weight[0, ...])

输出结果:
在这里插入图片描述

以上完整代码:

# -*- coding: utf-8 -*-
import torch
import numpy as np
import torch.nn as nn
class LeNet2(nn.Module):
    def __init__(self, classes):
        super(LeNet2, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 6, 5),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(6, 16, 5),
            nn.ReLU(),
            nn.MaxPool2d(2, 2)
        )
        self.classifier = nn.Sequential(
            nn.Linear(16*5*5, 120),
            nn.ReLU(),
            nn.Linear(120, 84),
            nn.ReLU(),
            nn.Linear(84, classes)
        )
    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size()[0], -1)
        x = self.classifier(x)
        return x
    def initialize(self):
        for p in self.parameters():
            p.data.fill_(20191104)
# ================================== load net ===========================
# flag = 1
flag = 0
if flag:
    path_model = "./model.pkl"
    net_load = torch.load(path_model)
    print(net_load)
# ================================== load state_dict ===========================
flag = 1
# flag = 0
if flag:
    path_state_dict = "./model_state_dict.pkl"
    state_dict_load = torch.load(path_state_dict)
    print(state_dict_load.keys())
# ================================== update state_dict ===========================
flag = 1
# flag = 0
if flag:
    net_new = LeNet2(classes=2024)
    print("加载前: ", net_new.features[0].weight[0, ...])
    net_new.load_state_dict(state_dict_load)
    print("加载后: ", net_new.features[0].weight[0, ...])

二、断点训练

首先我们需要确定模型训练过程中哪些参数是会一直发生变化的,模型中的权值以及优化器中的可学习参数是一直发生变化的,数据以及损失函数是保持不变的。
在这里插入图片描述
断点训练函数方法:
在这里插入图片描述

2.1 断点保存代码

当训练到第5次的时候我们进行人为中断训练,将当前训练阶段的模型权值参数、优化器参数、训练轮数保存到checkpoint

    if (epoch+1) % checkpoint_interval == 0:  # checkpoint_interval初始值设置为5
        checkpoint = {"model_state_dict": net.state_dict(),
                      "optimizer_state_dict": optimizer.state_dict(),
                      "epoch": epoch}
        path_checkpoint = "./checkpoint_{}_epoch.pkl".format(epoch)
        torch.save(checkpoint, path_checkpoint)
    if epoch > 5:
        print("训练意外中断...")
        break

输出结果:
在这里插入图片描述

2.2 断点恢复代码

加载上一次训练相关参数数据

# ============================ step 5+/5 断点恢复 ============================
path_checkpoint = "./checkpoint_4_epoch.pkl"
checkpoint = torch.load(path_checkpoint)
net.load_state_dict(checkpoint['model_state_dict'])  # 加载网络模型参数
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])  # 加载优化器当中相关可学习参数
start_epoch = checkpoint['epoch']  # 加载上一次训练轮数
scheduler.last_epoch = start_epoch  # 学习率策略更新

输出结果:
当前训练初始轮数从第5轮开始训练,所以精度可以很快增加。
在这里插入图片描述
完整代码展示

save_checkpoint.py;保存断点参数数据

# -*- coding: utf-8 -*-
import os
import random
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import torch.optim as optim
from PIL import Image
from matplotlib import pyplot as plt
import sys

hello_pytorch_DIR = os.path.abspath(os.path.dirname(__file__) + os.path.sep + ".." + os.path.sep + "..")
sys.path.append(hello_pytorch_DIR)
from model.lenet import LeNet
from tools.my_dataset import RMBDataset
from tools.common_tools import set_seed
import torchvision

set_seed(1)  # 设置随机种子
rmb_label = {"1": 0, "100": 1}

# 参数设置
checkpoint_interval = 5
MAX_EPOCH = 10
BATCH_SIZE = 16
LR = 0.01
log_interval = 10
val_interval = 1

# ============================ step 1/5 数据 ============================

BASE_DIR = os.path.dirname(os.path.abspath(__file__))
split_dir = os.path.abspath(os.path.join(BASE_DIR, "..", "..", "data", "rmb_split"))
train_dir = os.path.join(split_dir, "train")
valid_dir = os.path.join(split_dir, "valid")

if not os.path.exists(split_dir):
    raise Exception(r"数据 {} 不存在, 回到lesson-06\1_split_dataset.py生成数据".format(split_dir))

norm_mean = [0.485, 0.456, 0.406]
norm_std = [0.229, 0.224, 0.225]

train_transform = transforms.Compose([
    transforms.Resize((32, 32)),
    transforms.RandomCrop(32, padding=4),
    transforms.RandomGrayscale(p=0.8),
    transforms.ToTensor(),
    transforms.Normalize(norm_mean, norm_std),
])

valid_transform = transforms.Compose([
    transforms.Resize((32, 32)),
    transforms.ToTensor(),
    transforms.Normalize(norm_mean, norm_std),
])

# 构建MyDataset实例
train_data = RMBDataset(data_dir=train_dir, transform=train_transform)
valid_data = RMBDataset(data_dir=valid_dir, transform=valid_transform)

# 构建DataLoder
train_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
valid_loader = DataLoader(dataset=valid_data, batch_size=BATCH_SIZE)

# ============================ step 2/5 模型 ============================

net = LeNet(classes=2)
net.initialize_weights()

# ============================ step 3/5 损失函数 ============================
criterion = nn.CrossEntropyLoss()  # 选择损失函数

# ============================ step 4/5 优化器 ============================
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9)  # 选择优化器
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=6, gamma=0.1)  # 设置学习率下降策略

# ============================ step 5+/5 断点恢复 ============================

path_checkpoint = "./checkpoint_4_epoch.pkl"
checkpoint = torch.load(path_checkpoint)

net.load_state_dict(checkpoint['model_state_dict'])  # 加载网络模型参数

optimizer.load_state_dict(checkpoint['optimizer_state_dict'])  # 加载优化器当中相关可学习参数

start_epoch = checkpoint['epoch']  # 加载上一次训练轮数

scheduler.last_epoch = start_epoch  # 学习率策略更新

# ============================ step 5/5 训练 ============================
train_curve = list()
valid_curve = list()

for epoch in range(start_epoch + 1, MAX_EPOCH):

    loss_mean = 0.
    correct = 0.
    total = 0.

    net.train()
    for i, data in enumerate(train_loader):

        # forward
        inputs, labels = data
        outputs = net(inputs)

        # backward
        optimizer.zero_grad()
        loss = criterion(outputs, labels)
        loss.backward()

        # update weights
        optimizer.step()

        # 统计分类情况
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).squeeze().sum().numpy()

        # 打印训练信息
        loss_mean += loss.item()
        train_curve.append(loss.item())
        if (i + 1) % log_interval == 0:
            loss_mean = loss_mean / log_interval
            print("Training:Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
                epoch, MAX_EPOCH, i + 1, len(train_loader), loss_mean, correct / total))
            loss_mean = 0.

    scheduler.step()  # 更新学习率

    if (epoch + 1) % checkpoint_interval == 0:
        checkpoint = {"model_state_dict": net.state_dict(),
                      "optimizer_state_dic": optimizer.state_dict(),
                      "loss": loss,
                      "epoch": epoch}
        path_checkpoint = "./checkpint_{}_epoch.pkl".format(epoch)
        torch.save(checkpoint, path_checkpoint)

    # if epoch > 5:
    #     print("训练意外中断...")
    #     break

    # validate the model
    if (epoch + 1) % val_interval == 0:

        correct_val = 0.
        total_val = 0.
        loss_val = 0.
        net.eval()
        with torch.no_grad():
            for j, data in enumerate(valid_loader):
                inputs, labels = data
                outputs = net(inputs)
                loss = criterion(outputs, labels)

                _, predicted = torch.max(outputs.data, 1)
                total_val += labels.size(0)
                correct_val += (predicted == labels).squeeze().sum().numpy()

                loss_val += loss.item()

            valid_curve.append(loss.item())
            print("Valid:\t Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
                epoch, MAX_EPOCH, j + 1, len(valid_loader), loss_val / len(valid_loader), correct / total))

train_x = range(len(train_curve))
train_y = train_curve

train_iters = len(train_loader)
valid_x = np.arange(1, len(valid_curve) + 1) * train_iters * val_interval  # 由于valid中记录的是epochloss,需要对记录点进行转换到iterations
valid_y = valid_curve

plt.plot(train_x, train_y, label='Train')
plt.plot(valid_x, valid_y, label='Valid')

plt.legend(loc='upper right')
plt.ylabel('loss value')
plt.xlabel('Iteration')
plt.show()

checkpoint_resume.py:加载断点参数数据

# -*- coding: utf-8 -*-
import os
import random
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import torch.optim as optim
from PIL import Image
from matplotlib import pyplot as plt
import sys

hello_pytorch_DIR = os.path.abspath(os.path.dirname(__file__) + os.path.sep + ".." + os.path.sep + "..")
sys.path.append(hello_pytorch_DIR)
from model.lenet import LeNet
from tools.my_dataset import RMBDataset
from tools.common_tools import set_seed
import torchvision

set_seed(1)  # 设置随机种子
rmb_label = {"1": 0, "100": 1}

# 参数设置
checkpoint_interval = 5
MAX_EPOCH = 10
BATCH_SIZE = 16
LR = 0.01
log_interval = 10
val_interval = 1

# ============================ step 1/5 数据 ============================

BASE_DIR = os.path.dirname(os.path.abspath(__file__))
split_dir = os.path.abspath(os.path.join(BASE_DIR, "..", "..", "data", "rmb_split"))
train_dir = os.path.join(split_dir, "train")
valid_dir = os.path.join(split_dir, "valid")

if not os.path.exists(split_dir):
    raise Exception(r"数据 {} 不存在, 回到lesson-06\1_split_dataset.py生成数据".format(split_dir))

norm_mean = [0.485, 0.456, 0.406]
norm_std = [0.229, 0.224, 0.225]

train_transform = transforms.Compose([
    transforms.Resize((32, 32)),
    transforms.RandomCrop(32, padding=4),
    transforms.RandomGrayscale(p=0.8),
    transforms.ToTensor(),
    transforms.Normalize(norm_mean, norm_std),
])

valid_transform = transforms.Compose([
    transforms.Resize((32, 32)),
    transforms.ToTensor(),
    transforms.Normalize(norm_mean, norm_std),
])

# 构建MyDataset实例
train_data = RMBDataset(data_dir=train_dir, transform=train_transform)
valid_data = RMBDataset(data_dir=valid_dir, transform=valid_transform)

# 构建DataLoder
train_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
valid_loader = DataLoader(dataset=valid_data, batch_size=BATCH_SIZE)

# ============================ step 2/5 模型 ============================

net = LeNet(classes=2)
net.initialize_weights()

# ============================ step 3/5 损失函数 ============================
criterion = nn.CrossEntropyLoss()  # 选择损失函数

# ============================ step 4/5 优化器 ============================
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9)  # 选择优化器
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=6, gamma=0.1)  # 设置学习率下降策略

# ============================ step 5+/5 断点恢复 ============================

path_checkpoint = "./checkpoint_4_epoch.pkl"
checkpoint = torch.load(path_checkpoint)

net.load_state_dict(checkpoint['model_state_dict'])  # 加载网络模型参数

optimizer.load_state_dict(checkpoint['optimizer_state_dict'])  # 加载优化器当中相关可学习参数

start_epoch = checkpoint['epoch']  # 加载上一次训练轮数

scheduler.last_epoch = start_epoch  # 学习率策略更新

# ============================ step 5/5 训练 ============================
train_curve = list()
valid_curve = list()

for epoch in range(start_epoch + 1, MAX_EPOCH):

    loss_mean = 0.
    correct = 0.
    total = 0.

    net.train()
    for i, data in enumerate(train_loader):

        # forward
        inputs, labels = data
        outputs = net(inputs)

        # backward
        optimizer.zero_grad()
        loss = criterion(outputs, labels)
        loss.backward()

        # update weights
        optimizer.step()

        # 统计分类情况
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).squeeze().sum().numpy()

        # 打印训练信息
        loss_mean += loss.item()
        train_curve.append(loss.item())
        if (i + 1) % log_interval == 0:
            loss_mean = loss_mean / log_interval
            print("Training:Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
                epoch, MAX_EPOCH, i + 1, len(train_loader), loss_mean, correct / total))
            loss_mean = 0.

    scheduler.step()  # 更新学习率

    if (epoch + 1) % checkpoint_interval == 0:
        checkpoint = {"model_state_dict": net.state_dict(),
                      "optimizer_state_dic": optimizer.state_dict(),
                      "loss": loss,
                      "epoch": epoch}
        path_checkpoint = "./checkpint_{}_epoch.pkl".format(epoch)
        torch.save(checkpoint, path_checkpoint)

    # if epoch > 5:
    #     print("训练意外中断...")
    #     break

    # validate the model
    if (epoch + 1) % val_interval == 0:

        correct_val = 0.
        total_val = 0.
        loss_val = 0.
        net.eval()
        with torch.no_grad():
            for j, data in enumerate(valid_loader):
                inputs, labels = data
                outputs = net(inputs)
                loss = criterion(outputs, labels)

                _, predicted = torch.max(outputs.data, 1)
                total_val += labels.size(0)
                correct_val += (predicted == labels).squeeze().sum().numpy()

                loss_val += loss.item()

            valid_curve.append(loss.item())
            print("Valid:\t Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
                epoch, MAX_EPOCH, j + 1, len(valid_loader), loss_val / len(valid_loader), correct / total))

train_x = range(len(train_curve))
train_y = train_curve

train_iters = len(train_loader)
valid_x = np.arange(1, len(valid_curve) + 1) * train_iters * val_interval  # 由于valid中记录的是epochloss,需要对记录点进行转换到iterations
valid_y = valid_curve

plt.plot(train_x, train_y, label='Train')
plt.plot(valid_x, valid_y, label='Valid')

plt.legend(loc='upper right')
plt.ylabel('loss value')
plt.xlabel('Iteration')
plt.show()

三、finetune

3.1 迁移学习

首先了解一下迁移学习(Transfer Learning)概念:它机器学习分支,研究源域(source domain)的知识如何应用到目标域(target
domain),来提高模型的性能。
在这里插入图片描述

图(a)是传统的机器学习过程,针对某一个任务进行网络模型训练
图(b)是迁移学习过程,通过对源任务进行模型训练得到一个"知识",当我们需要训练一个新的任务时,可以在源任务训练的"知识"上继续进行训练,从而得到target模型;

3.2 模型的迁移学习

假设我们已经训练好一个模型了,我们把网络训练过程中的权值当做"知识",当我想要再训练一个新的模型任务时,但是数据量较小,不足以训练一个较好的模型,我们把上一个模型的知识应用到新的任务当中,这就是模型的迁移训练,从而提高模型的精度和效果。就好比一个人学会了一门乐器之后,已经掌握了相关乐理知识,再让他去学习另外一门乐器就会更加容易学习!!!在这里插入图片描述

3.2 模型微调步骤

通常我们会找到模型训练过程中具有相同共性的部分,例如下面这个神经网络,分为两部分,分别是特征提取部分feature和图像分类部分classifier两个部分,当我们需要进行其他图像分类任务的时候,我们可以保留图像特征提取部分,改变分类部分的output类别数。在这里插入图片描述

3.2.1 模型微调步骤

  1. 获取预训练模型参数:源任务当中学习到的"知识"。
  2. 加载模型(load_state_dict):将知识加载到新的模型当中。
  3. 修改输出层,不同任务输出层类别数不同。

3.2.2 模型微调训练方法

  1. 固定预训练的参数(固定参数的方法:requires_grad =False;lr=0)。
  2. Features Extractor较小学习率(params_group),不同的参数组设置不同的学习率,例如特征提取模块我们希望它变动不大,可以设置较小的学习率,在特征分类模块可以设置较大的学习率。

3.3 迁移训练实验

1、数据准备
Finetune Resnet -18 用于二分类,蚂蚁蜜蜂二分类数据,训练集:各120~张 验证集:各70~张
下载Resnet -18预训练模型,下载地址:https://download.pytorch.org/models/resnet18-5c106cde.pth
在这里插入图片描述

2、实验结果
在经过25轮训练之后,不使用预训练模型的精度提升的很慢,但是使用了预训练模型之后精度可以快速上升。
在这里插入图片描述


数据处理模块,用于获取蜜蜂和蚂蚁图片路径以及文件夹标签:

class AntsDataset(Dataset):
    def __init__(self, data_dir, transform=None):
        # 初始化函数,接收数据目录和数据变换操作
        self.label_name = {"ants": 0, "bees": 1}  # 定义标签对应的字典
        self.data_info = self.get_img_info(data_dir)  # 获取图片信息
        self.transform = transform  # 保存数据变换操作

    def __getitem__(self, index):
        # 获取指定索引处的数据
        path_img, label = self.data_info[index]  # 获取图片路径和标签
        img = Image.open(path_img).convert('RGB')  # 打开图片并转换为RGB格式

        if self.transform is not None:
            img = self.transform(img)  # 对图片进行数据变换
        return img, label  # 返回处理后的图片和标签

    def __len__(self):
        # 返回数据集的长度
        return len(self.data_info)

    def get_img_info(self, data_dir):
        # 获取图片信息的函数
        data_info = list()  # 创建空列表用于保存图片信息
        for root, dirs, _ in os.walk(data_dir):
            # 遍历数据目录中的子目录
            for sub_dir in dirs:
                img_names = os.listdir(os.path.join(root, sub_dir))  # 获取子目录下的文件列表
                img_names = list(filter(lambda x: x.endswith('.jpg'), img_names))  # 筛选出.jpg格式的文件名

                # 遍历该子目录下的图片
                for i in range(len(img_names)):
                    img_name = img_names[i]  # 获取图片文件名
                    path_img = os.path.join(root, sub_dir, img_name)  # 构建完整的图片路径
                    label = self.label_name[sub_dir]  # 获取图片的标签
                    data_info.append((path_img, int(label)))  # 将图片路径和标签添加到数据信息列表中

        if len(data_info) == 0:
            raise Exception("\ndata_dir:{} is a empty dir! Please checkout your path to images!".format(
                data_dir))  # 若数据信息列表为空,则抛出异常
        return data_info  # 返回图片信息列表

加载预训练模型模块:

flag = 1
if flag:
    path_pretrained_model = os.path.join("finetune_resnet18-5c106cde.pth")
    if not os.path.exists(path_pretrained_model):
        raise Exception("\n{} 不存在,请下载 07-02-数据-模型finetune.zip\n放到 {}下,并解压即可".format(
            path_pretrained_model, os.path.dirname(path_pretrained_model)))
    state_dict_load = torch.load(path_pretrained_model)
    resnet18_ft.load_state_dict(state_dict_load)

冻结网络层方法

# 冻结所有网络层
flag_m1 = 0
# flag_m1 = 1
if flag_m1:
    for param in resnet18_ft.parameters():
        param.requires_grad = False
    print("conv1.weights[0, 0, ...]:\n {}".format(resnet18_ft.fc.weight[0, 0, ...]))

替换fc层,因为我们是2分类模型,所以需要修改分类网络;

# 3/3 替换fc层
num_ftrs = resnet18_ft.fc.in_features  # 获取原网络中的特征输入
resnet18_ft.fc = nn.Linear(num_ftrs, classes)  #classes=2

网络分组模块,我们希望特征提取部分参数更新小一些,分类部分参数更新大一些;

if flag:
    # 将网络划分为两个参数组
    fc_params_id = list(map(id, resnet18_ft.fc.parameters()))
    """
    这一行首先使用resnet18_ft.fc.parameters()获取了ResNet18模型中全连接层的参数,
    然后通过map(id, ...)将每个参数的内存地址映射为一个列表。这样得到的fc_params_id列表包含了全连接层参数的内存地址。
    """
    base_params = filter(lambda p: id(p) not in fc_params_id, resnet18_ft.parameters())
    """
    这一行使用filter函数和lambda表达式来过滤resnet18_ft模型中不属于全连接层的参数。具体来说,filter函数通过
    lambda p: id(p) not in fc_params_id对resnet18_ft.parameters()中的参数进行过滤,
    保留那些内存地址不在fc_params_id列表中的参数。这样就得到了base_params,其中包含了除全连接层参数外的其他层的参数,也就是特征提取部分。
    """
    optimizer = optim.SGD([
        {'params': base_params, 'lr': LR * 0},  # 卷积层的学习率设置小一些,如果设置为0的话,会直接冻结卷积层
        {'params': resnet18_ft.fc.parameters(), 'lr': LR}], momentum=0.9)

else:
    optimizer = optim.SGD(resnet18_ft.parameters(), lr=LR, momentum=0.9)  # 选择优化器

完整模型训练代码如下:

# -*- coding: utf-8 -*-
import os
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import torch.optim as optim
from matplotlib import pyplot as plt
from torch.utils.data import Dataset
from PIL import Image
import sys
import random

hello_pytorch_DIR = os.path.abspath(os.path.dirname(__file__) + os.path.sep + ".." + os.path.sep + "..")
sys.path.append(hello_pytorch_DIR)
import torchvision.models as models
import torchvision

BASEDIR = os.path.dirname(os.path.abspath(__file__))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("use device :{}".format(device))


# =====================参数设置=====================
def set_seed(seed=1):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)


set_seed(1)  # 设置随机种子
label_name = {"ants": 0, "bees": 1}

# 参数设置
MAX_EPOCH = 25
BATCH_SIZE = 16
LR = 0.001
log_interval = 10
val_interval = 1
classes = 2
start_epoch = -1
lr_decay_step = 5


# =======================读取图片数据==============================
class AntsDataset(Dataset):
    def __init__(self, data_dir, transform=None):
        # 初始化函数,接收数据目录和数据变换操作
        self.label_name = {"ants": 0, "bees": 1}  # 定义标签对应的字典
        self.data_info = self.get_img_info(data_dir)  # 获取图片信息
        self.transform = transform  # 保存数据变换操作

    def __getitem__(self, index):
        # 获取指定索引处的数据
        path_img, label = self.data_info[index]  # 获取图片路径和标签
        img = Image.open(path_img).convert('RGB')  # 打开图片并转换为RGB格式

        if self.transform is not None:
            img = self.transform(img)  # 对图片进行数据变换
        return img, label  # 返回处理后的图片和标签

    def __len__(self):
        # 返回数据集的长度
        return len(self.data_info)

    def get_img_info(self, data_dir):
        # 获取图片信息的函数
        data_info = list()  # 创建空列表用于保存图片信息
        for root, dirs, _ in os.walk(data_dir):
            # 遍历数据目录中的子目录
            for sub_dir in dirs:
                img_names = os.listdir(os.path.join(root, sub_dir))  # 获取子目录下的文件列表
                img_names = list(filter(lambda x: x.endswith('.jpg'), img_names))  # 筛选出.jpg格式的文件名

                # 遍历该子目录下的图片
                for i in range(len(img_names)):
                    img_name = img_names[i]  # 获取图片文件名
                    path_img = os.path.join(root, sub_dir, img_name)  # 构建完整的图片路径
                    label = self.label_name[sub_dir]  # 获取图片的标签
                    data_info.append((path_img, int(label)))  # 将图片路径和标签添加到数据信息列表中

        if len(data_info) == 0:
            raise Exception("\ndata_dir:{} is a empty dir! Please checkout your path to images!".format(
                data_dir))  # 若数据信息列表为空,则抛出异常
        return data_info  # 返回图片信息列表


# ============================ step 1/5 数据 ============================
data_dir = os.path.abspath(os.path.join(BASEDIR, "..", "..", "data", "hymenoptera_data"))
if not os.path.exists(data_dir):
    raise Exception("\n{} 不存在,请下载 07-02-数据-模型finetune.zip  放到\n{} 下,并解压即可".format(
        data_dir, os.path.dirname(data_dir)))

train_dir = os.path.join(data_dir, "train")
valid_dir = os.path.join(data_dir, "val")

norm_mean = [0.485, 0.456, 0.406]
norm_std = [0.229, 0.224, 0.225]

train_transform = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize(norm_mean, norm_std),
])

valid_transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(norm_mean, norm_std),
])

# 构建MyDataset实例
train_data = AntsDataset(data_dir=train_dir, transform=train_transform)
valid_data = AntsDataset(data_dir=valid_dir, transform=valid_transform)

# 构建DataLoder
train_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
valid_loader = DataLoader(dataset=valid_data, batch_size=BATCH_SIZE)

# ============================ step 2/5 模型 ============================

# 1/3 构建模型
resnet18_ft = models.resnet18()

# 2/3 加载模型参数
# flag = 0
flag = 1
if flag:
    path_pretrained_model = os.path.join("finetune_resnet18-5c106cde.pth")
    if not os.path.exists(path_pretrained_model):
        raise Exception("\n{} 不存在,请下载 07-02-数据-模型finetune.zip\n放到 {}下,并解压即可".format(
            path_pretrained_model, os.path.dirname(path_pretrained_model)))
    state_dict_load = torch.load(path_pretrained_model)
    resnet18_ft.load_state_dict(state_dict_load)

# 冻结所有网络层
flag_m1 = 0
# flag_m1 = 1
if flag_m1:
    for param in resnet18_ft.parameters():
        param.requires_grad = False
    print("conv1.weights[0, 0, ...]:\n {}".format(resnet18_ft.fc.weight[0, 0, ...]))

# 冻结卷积层
flag_c = 0
# flag_c = 1
if flag_c:
    for name, param in resnet18_ft.named_parameters():
        if "fc" in name:  # 如果参数名中不包含"fc",即不是全连接层的参数
            param.requires_grad = False

# 3/3 替换fc层
num_ftrs = resnet18_ft.fc.in_features  # 获取原网络中的特征输入
resnet18_ft.fc = nn.Linear(num_ftrs, classes)

resnet18_ft.to(device)
# ============================ step 3/5 损失函数 ============================
criterion = nn.CrossEntropyLoss()  # 选择损失函数

# ============================ step 4/5 优化器 ============================
# 法2 : conv 小学习率
flag = 0
# flag = 1
if flag:
    # 将网络划分为两个参数组
    fc_params_id = list(map(id, resnet18_ft.fc.parameters()))
    """
    这一行首先使用resnet18_ft.fc.parameters()获取了ResNet18模型中全连接层的参数,
    然后通过map(id, ...)将每个参数的内存地址映射为一个列表。这样得到的fc_params_id列表包含了全连接层参数的内存地址。
    """
    base_params = filter(lambda p: id(p) not in fc_params_id, resnet18_ft.parameters())
    """
    这一行使用filter函数和lambda表达式来过滤resnet18_ft模型中不属于全连接层的参数。具体来说,filter函数通过
    lambda p: id(p) not in fc_params_id对resnet18_ft.parameters()中的参数进行过滤,
    保留那些内存地址不在fc_params_id列表中的参数。这样就得到了base_params,其中包含了除全连接层参数外的其他层的参数,也就是特征提取部分。
    """
    optimizer = optim.SGD([
        {'params': base_params, 'lr': LR * 0},  # 卷积层的学习率设置小一些,如果设置为0的话,会直接冻结卷积层
        {'params': resnet18_ft.fc.parameters(), 'lr': LR}], momentum=0.9)

else:
    optimizer = optim.SGD(resnet18_ft.parameters(), lr=LR, momentum=0.9)  # 选择优化器
    # optimizer = optim.Adam(resnet18_ft.parameters(), lr=0.01)

scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=lr_decay_step, gamma=0.1)  # 设置学习率下降策略

# ============================ step 5/5 训练 ============================
train_curve = list()
valid_curve = list()

for epoch in range(start_epoch + 1, MAX_EPOCH):

    loss_mean = 0.
    correct = 0.
    total = 0.

    resnet18_ft.train()
    for i, data in enumerate(train_loader):

        # forward
        inputs, labels = data
        inputs, labels = inputs.to(device), labels.to(device)
        outputs = resnet18_ft(inputs)

        # backward
        optimizer.zero_grad()
        loss = criterion(outputs, labels)
        loss.backward()

        # update weights
        optimizer.step()

        # 统计分类情况
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).squeeze().cpu().sum().numpy()

        # 打印训练信息
        loss_mean += loss.item()
        train_curve.append(loss.item())
        if (i + 1) % log_interval == 0:
            loss_mean = loss_mean / log_interval
            print("Training:Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
                epoch, MAX_EPOCH, i + 1, len(train_loader), loss_mean, correct / total))
            loss_mean = 0.

            # if flag_m1:
            print("epoch:{} conv1.weights[0, 0, ...] :\n {}".format(epoch, resnet18_ft.fc.weight[0, 0, ...]))

    scheduler.step()  # 更新学习率

    # validate the model
    if (epoch + 1) % val_interval == 0:

        correct_val = 0.
        total_val = 0.
        loss_val = 0.
        resnet18_ft.eval()
        with torch.no_grad():
            for j, data in enumerate(valid_loader):
                inputs, labels = data
                inputs, labels = inputs.to(device), labels.to(device)

                outputs = resnet18_ft(inputs)
                loss = criterion(outputs, labels)

                _, predicted = torch.max(outputs.data, 1)
                total_val += labels.size(0)
                correct_val += (predicted == labels).squeeze().cpu().sum().numpy()

                loss_val += loss.item()

            loss_val_mean = loss_val / len(valid_loader)
            valid_curve.append(loss_val_mean)
            print("Valid:\t Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
                epoch, MAX_EPOCH, j + 1, len(valid_loader), loss_val_mean, correct_val / total_val))

train_x = range(len(train_curve))
train_y = train_curve

train_iters = len(train_loader)
valid_x = np.arange(1, len(valid_curve) + 1) * train_iters * val_interval  # 由于valid中记录的是epochloss,需要对记录点进行转换到iterations
valid_y = valid_curve

plt.plot(train_x, train_y, label='Train')
plt.plot(valid_x, valid_y, label='Valid')

plt.legend(loc='upper right')
plt.ylabel('loss value')
plt.xlabel('Iteration')
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/312377.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

计算机毕业设计 基于SpringBoot的物资综合管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…

mysql原理--redo日志2

1.redo日志文件 1.1.redo日志刷盘时机 我们前边说 mtr 运行过程中产生的一组 redo 日志在 mtr 结束时会被复制到 log buffer 中,可是这些日志总在内存里呆着也不是个办法,在一些情况下它们会被刷新到磁盘里,比如: (1). log buffer…

ROS2——常见的指令

在使用source ∼/bookros_ws/install/setup.bash后&#xff0c;可以让ROS2找到这个工作空间&#xff0c;进而可以调用相关的命令 概述 ros2 <command> <verb> [<params>|<option>]*这是ROS2与系统交互的方式 在终端输入ros2&#xff0c;即可查看相关…

YOLOv5改进 | 检测头篇 | ASFFHead自适应空间特征融合检测头(全网首发)

一、本文介绍 本文给大家带来的改进机制是利用ASFF改进YOLOv5的检测头形成新的检测头Detect_ASFF,其主要创新是引入了一种自适应的空间特征融合方式,有效地过滤掉冲突信息,从而增强了尺度不变性。经过我的实验验证,修改后的检测头在所有的检测目标上均有大幅度的涨点效果,…

065:vue中将一维对象数组转换为二维对象数组

第065个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下&#xff0c;本专栏提供行之有效的源代码示例和信息点介绍&#xff0c;做到灵活运用。 &#xff08;1&#xff09;提供vue2的一些基本操作&#xff1a;安装、引用&#xff0c;模板使…

Sqoop入门指南:安装和配置

Sqoop是一个强大的工具&#xff0c;用于在Hadoop和关系型数据库之间高效传输数据。在本篇文章中&#xff0c;将深入探讨如何安装和配置Sqoop&#xff0c;以及提供详细的示例代码。 安装Java和Hadoop 在开始安装Sqoop之前&#xff0c;首先确保已经成功安装了Java和Hadoop。Sqo…

第十四章JSON

第十四章JSON 1.什么是JSON2.JSON的定义和访问3.JSON在JavaScript中两种常用的转换方式4.JavaBean和JSON的相互转换5.List集合和JSON的相互转换6.map集合和JSON的相互转换 1.什么是JSON 2.JSON的定义和访问 JSON的定义 JSON的类型是一个Object类型 JSON的访问 我们要…

轮询定时器 清除 + vue2.0

需求? Gin Vue Element UI框架中, 我的大屏可视化项目, 大屏页面, 里边写了多个轮询定时器. 离开页面需要清理掉, 要不然切换路由还会在后台运行, 页面是自动缓存状态, 也不存在销毁一说了 所以通过路由router配置中, 页面路由监听中, 进行监听路由变化, 但是也没生效 …

屏幕截图编辑工具Snagit中文

Snagit是一款优秀的屏幕、文本和视频捕获与转换程序。它能够捕获屏幕、窗口、客户区窗口、最后一个激活的窗口或用鼠标定义的区域&#xff0c;并支持BMP、PCX、TIF、GIF或JPEG格式的保存。Snagit还具有自动缩放、颜色减少、单色转换、抖动等功能&#xff0c;并能将捕获的图像转…

安达发|APS排程系统之产品相似规则

APS排程系统是一种广泛应用于制造业的智能生产计划和调度工具&#xff0c;它能够帮助企业实现生产过程的优化、提高生产效率和降低生产成本。在APS排程系统中&#xff0c;相似产品规则是一种非常重要的功能&#xff0c;它可以帮助企业更好地管理和控制生产过程中的各种相似产品…

【微服务】日志搜集elasticsearch+kibana+filebeat(单机)

日志搜集eskibanafilebeat&#xff08;单机&#xff09; 日志直接输出到es中&#xff0c;适用于日志量小的项目 基于7.17.16版本 主要配置在于filebeat&#xff0c; es kibana配置改动不大 环境部署 es kibana单机环境部署 略 解压即可 常见报错&#xff0c;百度即可。 记录…

大模型关于Lora论文集合

《Chain of LoRA:Efficient Fine-tuning of Language Models via Residual Learning》 Chain of LoRA (COLA)&#xff0c;这是一种受 Frank-Wolfe 算法启发的迭代优化框架&#xff0c;旨在弥合 LoRA 和全参数微调之间的差距&#xff0c;而不会产生额外的计算成本或内存开销。CO…

【AI视野·今日Sound 声学论文速览 第四十五期】Wed, 10 Jan 2024

AI视野今日CS.Sound 声学论文速览 Wed, 10 Jan 2024 Totally 12 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Sound Papers Masked Audio Generation using a Single Non-Autoregressive Transformer Authors Alon Ziv, Itai Gat, Gael Le Lan, Tal Remez, Felix…

智能分析网关V4方案:太阳能+4G+AI识别搭建智慧果园/种植园远程视频监控监管方案

一、方案背景 我国是水果生产大国&#xff0c;果园种植面积大、产量高。由于果园的位置大都相对偏远、面积较大、看守人员较少&#xff0c;值守的工作人员无法顾及园区每个角落&#xff0c;果园财产安全成为了关注的重点。人为偷盗、野生生物偷吃等事件时有发生&#xff0c;并…

【期末不挂科-C++考前速过系列P1】大二C++第1次过程考核(3道简述题&7道代码题)【解析,注释】

前言 大家好吖&#xff0c;欢迎来到 YY 滴C复习系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; YY的《C》专栏YY的《C11》专栏YY的《Lin…

详细分析Java中的分布式任务调度框架 XXL-Job

目录 前言1. 基本知识2. Demo3. 实战 前言 可视化任务调度 可视化配置 1. 基本知识 在Java中&#xff0c;分布式任务调度框架 XXL-Job 是一个开源的分布式任务调度平台&#xff0c;用于实现分布式系统中的定时任务调度和分布式任务执行。 下面是关于XXL-Job的一些概念、功…

C#用string.Replace方法批量替换某一类字符串

目录 一、关于字符串及其操作常识 二、String.Replace 方法 1.重载 2.Replace(Char, Char) 3.Replace(String, String) &#xff08;1&#xff09;实例&#xff1a; &#xff08;2&#xff09;生成结果&#xff1a; 4.Replace(String, String, StringComparison) 5.…

Ubuntu20.04下A-LOAM配置安装及测试教程(包含报错问题踩坑)

参考文章&#xff1a; ubuntu20.04下ros运行A-LOAM Ubuntu20.04下运行LOAM系列&#xff1a;A-LOAM、LeGO-LOAM、SC-LeGO-LOAM、LIO-SAM 和 LVI-SAM 需要学习源码的同学可以下载LOAM论文 LOAM论文链接 1.需要安装的库文件 1.1Eigen 3.3 可以直接使用apt命令安装&#xff0c;或…

【GO语言依赖】Go语言依赖管理简述

在运行环境中&#xff0c;遭遇报错&#xff0c;显示找不到函数 经过研究后发现需要进行依赖管理&#xff0c;进行如下操作后解决&#xff1a; 起源 最早的时候&#xff0c;Go所依赖的所有的第三方库都放在GOPATH这个目录下面。这就导致了同一个库只能保存一个版本的代码。如…

VS中动态库的创建和调用

VS中动态库的创建和调用 库 ​ 库是写好的现有的&#xff0c;成熟的&#xff0c;可以复用的代码。库的存在形式本质上来说库是一种可执行代码的二进制。 ​ 库有两种&#xff1a;静态库&#xff08;.a、.lib&#xff09;和动态库&#xff08;.so、.dll&#xff09;。所谓静态…