模拟数字转换器

本节主要介绍以下内容:

ADC简介

ADC功能框图详解

参考资料:《零死角玩转STM32》ADC—电压采集”章节

一、ADC简介

ADC  Analog to Digital,模拟数字转换器

  • 三个独立的ADC 1 / 2 / 3
  • 分辨率为12
  • 每个ADC具有18个通道,其中外部通道16

二、ADC功能框图讲解 

框图主要分为以下七个部分:

1-电压输入范围   2-输入通道   3-转换顺序  4-触发源    5-转换时间    6-数据寄存器  7-中断

2.1 电压输入范围

        ADC 输入范围为:VREF- ≤ VIN ≤ VREF+。由VREF-、VREF+ 、VDDA 、VSSA、这四个外部引脚决定。我们在设计原理图的时候一般把VSSA和VREF-接地,把VREF+和VDDA 接3V3,得到ADC的输入电压范围为:0~3.3V。
        如果我们想让输入的电压范围变宽,去到可以测试负电压或者更高的正电压,我们可以在外部加一个电压调理电路,把需要转换的电压抬升或者降压到0~3.3V,这样ADC 就可以测量了

输入电压:VREF- ≤ VIN ≤ VREF+

决定输入电压的引脚:VREF-VREF+ VDDA VSSA

VSSA VREF-接地,把 VREF+VDDA 3V3,得到ADC 的输入电压范围为: 0~3.3V

那么超出0~3.3V的电压怎么测?

ADC可以测量:-10V~10V

根据基尔霍夫定律(KCL),节点流入的电流等于流出的电流

(VintVout)/R2 + (3V3-Vout)/R1 = Vout / R3

Vout = (Vint + 10) /6 

2.2 输入通道

        我们确定好ADC 输入电压之后,那么电压怎么输入到ADC?这里我们引入通道的概念,STM32 的ADC 多达18 个通道,其中外部的16 个通道就是框图中的ADCx_IN0、ADCx_IN1...ADCx_IN5。这16 个通道对应着不同的IO 口,具体是哪一个IO 口可以从手册查询到。其中ADC1/2/3 还有内部通道:ADC1的通道16连接到了芯片内部的温度传感器,Vrefint 连接到了通道17。ADC2 的模拟通道16 和17 连接到了内部的VSS。ADC3 的模拟通道9、14、15、16 和17 连接到了内部的VSS。

每个ADC具有18个通道,其中外部通道16

2.3 输入通道分类

        外部的 16 个通道在转换的时候又分为规则通道注入通道,其中规则通道最多有 16路,注入通道最多有 4 路。那这两个通道有什么区别?在什么时候使用?

规则通道:顾名思意,规则通道就是很规矩的意思,我们平时一般使用的就是这个通道。

注入通道:注入,可以理解为插入,插队的意思,是一种不安分的通道。它是一种在规则通道转换的时候强行插入要转换的一种。这点跟中断程序很像,都是不安分的主。所以,注入通道只有在规则通道存在时才会出现。(平时不需要使用)

2.3.1 通道转换顺序

        由寄存器来决定规则通道的转换顺序,叫规则序列寄存器,SQR1 2 3 分别控制不同通道的转换方式,比如SQR3控制通道1-6的转换设计,2^4 = 16,可以取值到1-16,如果取1,表示通道1,第一个转换,取2,表示通道2,第一个转换。

        规则序列寄存器有3 个,分别为SQR3、SQR2、SQR1。SQR3 控制着规则序列中的第
一个到第六个转换,对应的位为:SQ1[4:0]~SQ6[4:0],第一次转换的是位4:0 SQ1[4:0],如
果通道16 想第一次转换,那么在SQ1[4:0]写16 即可。SQR2 控制着规则序列中的第7 到第
12 个转换,对应的位为:SQ7[4:0]~SQ12[4:0],如果通道1 想第8 个转换,则SQ8[4:0]写1
即可。SQR1 控制着规则序列中的第13 到第16 个转换,对应位为:SQ13[4:0]~SQ16[4:0],
如果通道6 想第10 个转换,则SQ10[4:0]写6 即可。具体使用多少个通道,由SQR1 的位
L[3:0]决定,最多16 个通道。

2.4 触发源

     通道选好了,转换的顺序也设置好了,那接下来就该开始转换了。ADC 转换可以由
ADC 控制寄存器2: ADC_CR2 的ADON 这个位来控制,写1 的时候开始转换,写0 的时候
停止转换,这个是最简单也是最好理解的开启ADC 转换的控制方式,理解起来没啥技术含
量。

        除了这种庶民式的控制方法,ADC 还支持触发转换,这个触发包括内部定时器触发和
外部IO 触发。触发源有很多,具体选择哪一种触发源,由ADC 控制寄存器2:ADC_CR2 的
EXTSEL[2:0] 和JEXTSEL[2:0]位来控制。EXTSEL[2:0]用于选择规则通道的触发源,
JEXTSEL[2:0]用于选择注入通道的触发源。选定好触发源之后,触发源是否要激活,则由
ADC 控制寄存器2:ADC_CR2 的EXTTRIG 和JEXTTRIG 这两位来激活。其中ADC3 的规则转
换和注入转换的触发源与ADC1/2 的有所不同,在框图上已经表示出来。

1、软件触发:ADC_CR2 :ADON/SWST       ART/JSWSTART

2、外部事件触发:内部定时器/外部IO

选择:ADC_CR2 :EXTSEL[2:0]JEXTSEL[2:0]

激活:ADC_CR2 :EXTEN JEXTEN

2.5 转换时间

        ADC 输入时钟ADC_CLK 由PCLK2 经过分频产生,最大是14M,分频因子由RCC 时
钟配置寄存器RCC_CFGR 的位15:14 ADCPRE[1:0]设置,可以是2/4/6/8 分频,注意这里没
有1 分频。一般我们设置PCLK2=HCLK=72M。

        ADC 使用若干个ADC_CLK 周期对输入的电压进行采样,采样的周期数可通过ADC
采样时间寄存器ADC_SMPR1 和ADC_SMPR2 中的SMP[2:0]位设置,ADC_SMPR2 控制的
是通道0~9,ADC_SMPR1 控制的是通道10~17。每个通道可以分别用不同的时间采样。其
中采样周期最小是1.5 个,即如果我们要达到最快的采样,那么应该设置采样周期为1.5 个
周期,这里说的周期就是1/ADC_CLK。

        ADC 的转换时间跟ADC 的输入时钟和采样时间有关,公式为:Tconv = 采样时间 +
12.5 个周期。当ADCLK = 14MHZ (最高),采样时间设置为1.5 周期(最快),那么总
的转换时间(最短)Tconv = 1.5 周期 + 12.5 周期 = 14 周期 = 1us。
一般我们设置PCLK2=72M,经过ADC 预分频器能分频到最大的时钟只能是12M,采
样周期设置为1.5 个周期,算出最短的转换时间为1.17us,这个才是最常用的。

转换时间:Tconv = 采样时间 + 12.5 个周期

ADC_CLKADC模拟电路时钟,最大值为14M,由PCLK2提供,还可分频,2/4/6/8RCC_CFGR ADCPRE[1:0]设置。PCLK2=72M

数字时钟:RCC_APB2ENR,用于访问寄存器

采样时间ADC 需要若干个 ADC_CLK 周期完成对输入的模拟量进行采样,采样的周期数可通过ADC 采样时间寄存器 ADC_SMPR1 ADC_SMPR2 中的 SMPx[2:0]位设置, ADC_SMPR2控制的是通道 0~9ADC_SMPR1 控制的是通道 10~17。每个通道可以分别用不同的时间采样。其中采样周期最小是 1.5 个,即如果我们要达到最快的采样,那么应该设置采样周期为 31.5个周期,这里说的周期就是 1/ADC_CLK

最短的转换时间:Tconv = 采样时间 + 12.5 个周期

PCLK2 = 72MADC_CLK = 72/6 = 12M

Tconv = 1.5+12.5 = 14周期 = 14/12us=1.17us

2.6 数据寄存器

一切准备就绪后, ADC 转换后的数据根据转换组的不同,规则组的数据放在ADC_DR 寄存器,注入组的数据放在 JDRx

2.6.1 规则数据寄存器

    ADC 规则组数据寄存器ADC_DR 只有一个,是一个32 位的寄存器,低16 位在单ADC
时使用,高16 位是在ADC1 中双模式下保存ADC2 转换的规则数据,双模式就是ADC1 和
ADC2 同时使用。在单模式下,ADC1/2/3 都不使用高16 位。因为ADC 的精度是12 位,无
论ADC_DR 的高16 或者低16 位都放不满,只能左对齐或者右对齐,具体是以哪一种方式
存放,由ADC_CR2 的11 位ALIGN 设置。

        规则通道可以有16 个这么多,可规则数据寄存器只有一个,如果使用多通道转换,那
转换的数据就全部都挤在了DR 里面,前一个时间点转换的通道数据,就会被下一个时间
点的另外一个通道转换的数据覆盖掉,所以当通道转换完成后就应该把数据取走,或者开
启DMA 模式,把数据传输到内存里面,不然就会造成数据的覆盖。最常用的做法就是开
启DMA 传输。

1-16位有效,用于存放独立模式转换完成数据 

2- ADC_CR2 ALIGN

3-只有一个,多通道采集的是最好使用DMA

2.6.2 注入数据寄存器

        ADC 注入组最多有4 个通道,刚好注入数据寄存器也有4 个,每个通道对应着自己的
寄存器,不会跟规则寄存器那样产生数据覆盖的问题。ADC_JDRx 是32 位的,低16 位有
效,高16 位保留,数据同样分为左对齐和右对齐,具体是以哪一种方式存放,由
ADC_CR2 的11 位ALIGN 设置。

1-16位有效,用于存放注入通道转换完成数据

2- ADC_CR2 ALIGN

3-4个这样的寄存器

2.7 中断

2.7.1 转换结束中断

        数据转换结束后,可以产生中断,中断分为三种:规则通道转换结束中断,注入转换通道转换结束中断,模拟看门狗中断。其中转换结束中断很好理解,跟我们平时接触的中断一样,有相应的中断标志位和中断使能位,我们还可以根据中断类型写相应配套的中断服务程序。

2.7.2 模拟看门狗中断

        当被ADC 转换的模拟电压低于低阈值或者高于高阈值时,就会产生中断,前提是我们开启了模拟看门狗中断,其中低阈值和高阈值由ADC_LTR 和ADC_HTR 设置。例如我们设置高阈值是2.5V,那么模拟电压超过2.5V 的时候,就会产生模拟看门狗中断,反之低阈值也一样。

2.7.3 DMA 请求

        规则和注入通道转换结束后,除了产生中断外,还可以产生DMA 请求,把转换好的
数据直接存储在内存里面。要注意的是只有ADC1 和ADC3 可以产生DMA 请求。有关
DMA请求需要配合《STM32F10X-中文参考手册》DMA控制器这一章节来学习。一般我们
在使用ADC 的时候都会开启DMA 传输。

 那么,怎么根据数据量算出模拟量 

        模拟电压经过ADC 转换后,是一个12 位的数字值,如果通过串口以16 进制打印出来的话,可读性比较差,那么有时候我们就需要把数字电压转换成模拟电压,也可以跟实际的模拟电压(用万用表测)对比,看看转换是否准确。

        我们一般在设计原理图的时候会把ADC 的输入电压范围设定在:0~3.3v,因为ADC是12 位的,那么12 位满量程对应的就是3.3V,12 位满量程对应的数字值是:2^12。数值0 对应的就是0V。如果转换后的数值为 X ,X 对应的模拟电压为Y,那么会有这么一个等式成立: 2^12 / 3.3 = X / Y,=> Y = (3.3 * X ) / 2^12。

三、ADC初始化结构体讲解

        标准库函数对每个外设都建立了一个初始化结构体xxx_InitTypeDef(xxx 为外设名称),结构体成员用于设置外设工作参数,并由标准库函数xxx_Init()调用这些设定参数进入设置外设相应的寄存器,达到配置外设工作环境的目的。

        结构体xxx_InitTypeDef 和库函数xxx_Init 配合使用是标准库精髓所在,理解了结构体
xxx_InitTypeDef 每个成员意义基本上就可以对该外设运用自如了。结构体xxx_InitTypeDef定义在stm32f10x_xxx.h 文件中,库函数xxx_Init 定义在stm32f10x_xxx.c 文件中,编程时我们可以结合这两个文件内注释使用。

ADC_InitTypeDef 结构体

ADC_Mode:配置ADC 的模式,当使用一个ADC 时是独立模式,使用两个ADC 时是
双模式,在双模式下还有很多细分模式可选,具体配置ADC_CR1:DUALMOD 位。

ScanConvMode:可选参数为ENABLE 和DISABLE,配置是否使用扫描。如果是单通
道AD 转换使用DISABLE , 如果是多通道AD 转换使用ENABLE , 具体配置
ADC_CR1:SCAN 位。

ADC_ContinuousConvMode:可选参数为ENABLE 和DISABLE,配置是启动自动连续
转换还是单次转换。使用ENABLE 配置为使能自动连续转换;使用DISABLE 配置为单次
转换,转换一次后停止需要手动控制才重新启动转换,具体配置ADC_CR2:CON 位。

ADC_ExternalTrigConv:外部触发选择,上文中断章节 列举了很多外部触发条件,可根据
项目需求配置触发来源。实际上,我们一般使用软件自动触发。

ADC_DataAlign:转换结果数据对齐模式,可选右对齐ADC_DataAlign_Right或者左对
齐ADC_DataAlign_Left。一般我们选择右对齐模式。

ADC_NbrOfChannel:AD 转换通道数目,根据实际设置即可。具体的通道数和通道的
转换顺序是配置规则序列或注入序列寄存器。

几个常用的固件库函数讲解

  • ADC_Init();    429             
  • RCC_ADCCLKConfig();    680                       //该函数配置ADC clock的分频
  • ADC_RegularChannelConfig();    442             //配置通道的转换顺序
  • ADC_Cmd();     431                                      
  • ADC_SoftwareStartConvCmd();    438         //软件触发
  • ADC_ExternalTrigConvCmd();    443            //外部触发
  • ADC_DMACmd();    432                                //采集并转换完数据之后,要不要启动DMA把                                                                            数据存储到其他地方

四、模数转换器相关代码讲解

        STM32 的ADC 功能繁多,我们设计三个实验尽量完整的展示ADC 的功能。首先是比
较基础实用的单通道采集,实现开发板上电位器电压的采集,并通过串口打印至PC端串口
调试助手。单通道采集适用AD 转换完成中断,在中断服务函数中读取数据,不使用DMA
传输,在多通道采集时才使用DMA 传输。

4.1 硬件设计

霸道ADC接口

        贴片滑动变阻器的动触点通过连接至STM32 芯片的ADC 通道引脚。当我们旋转滑动变阻器调节旋钮时,其动触点电压也会随之改变,电压变化范围为0~3.3V,亦是开发板默认的ADC 电压采集范围。

4.2 软件设计

  1. -独立模式-单通道-中断读取
  2. -独立模式-单通道-DMA读取
  3. -独立模式-多通道-DMA读取
  4. -双重模式-多通道-规则同步
 4.2.1 -独立模式-单通道-中断读取

编程要点

  1. 初始化ADC用到的GPIO
  2. 初始化ADC初始化结构体
  3. 配置ADC时钟,配置通道的转换顺序和采样时间
  4. 使能ADC转换完成中断,配置中断优先级
  5. 使能ADC,准备开始转换
  6. 校准ADC
  7. 软件触发ADC,真正开始转换
  8. 编写中断服务函数,读取ADC转换数据
  9. 编写main函数,把转换的数据打印出来

 bsp_adc.h

#ifndef __ADC_H
#define	__ADC_H


#include "stm32f10x.h"

// ADC 编号选择
// 可以是 ADC1/2,如果使用ADC3,中断相关的要改成ADC3的
#define    ADC_APBxClock_FUN             RCC_APB2PeriphClockCmd
#define    ADCx                          ADC2
#define    ADC_CLK                       RCC_APB2Periph_ADC2

// ADC GPIO宏定义
// 注意:用作ADC采集的IO必须没有复用,否则采集电压会有影响
#define    ADC_GPIO_APBxClock_FUN        RCC_APB2PeriphClockCmd
#define    ADC_GPIO_CLK                  RCC_APB2Periph_GPIOC  
#define    ADC_PORT                      GPIOC
#define    ADC_PIN                       GPIO_Pin_1
// ADC 通道宏定义
#define    ADC_CHANNEL                   ADC_Channel_11

// ADC 中断相关宏定义
#define    ADC_IRQ                       ADC1_2_IRQn
#define    ADC_IRQHandler                ADC1_2_IRQHandler

//#define    ADC_IRQ                       ADC3_IRQn
//#define    ADC_IRQHandler                ADC3_IRQHandler


void ADCx_Init(void);


#endif /* __ADC_H */

bsp_adc.c

#include"bsp_adc.h"

static void ADCx_GPIO_Config(void )
{
	GPIO_InitTypeDef GPIO_InitStructure;
	
	ADC_GPIO_APBxClock_FUN(ADC_GPIO_CLK,ENABLE);
	
	// 配置 ADC IO 引脚模式
	// 必须为模拟输入
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
	GPIO_InitStructure.GPIO_Pin = ADC_PIN;
	
		// 初始化 ADC IO
	GPIO_Init(ADC_PORT, &GPIO_InitStructure);	
}

static void ADCx_Mode_Config(void )
{
	ADC_InitTypeDef ADC_InitStructure;
	
	// 打开ADC时钟
	ADC_APBxClock_FUN(ADC_CLK,ENABLE);
	
	// ADC 模式配置
	// 只使用一个ADC,属于独立模式
	ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
	
	// 禁止扫描模式,多通道才要,单通道不需要
	ADC_InitStructure.ADC_ScanConvMode = DISABLE;
	
	 连续转换模式
	ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
	
	
	// 不用外部触发转换,软件开启即可
	ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
	
	// 转换结果右对齐	
	ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
	
	// 转换通道1个
	ADC_InitStructure.ADC_NbrOfChannel = 1;

	// 初始化ADC
	ADC_Init(ADC_x,&ADC_InitStructure);
	
	//配置ADC时钟
	RCC_ADCCLKConfig(RCC_PCLK2_Div8);
	
	//配置通道的转换顺序和采样时间
	ADC_RegularChannelConfig(ADC_x,ADC_CHANNEL,1,ADC_SampleTime_55Cycles5);
	
	//4、使能ADC转换完成中断,配置中断优先级	
	ADC_ITConfig(ADC_x, ADC_IT_EOC, ENABLE);
	
	//5、使能ADC,准备开始转换
	ADC_Cmd(ADC_x, ENABLE);
	
	// 初始化ADC 校准寄存器  
	ADC_ResetCalibration(ADC_x);
	// 等待校准寄存器初始化完成
	while(ADC_GetResetCalibrationStatus(ADC_x));
	
	//6、校准ADC
	// ADC开始校准
	ADC_StartCalibration(ADC_x);
	// 等待校准完成
	while(ADC_GetCalibrationStatus(ADC_x));
	
	//软件触发ADC,真正开始转换
	ADC_SoftwareStartConvCmd(ADC_x, ENABLE);
	

}

static void ADC_NVIC_Config(void)
{
	NVIC_InitTypeDef NVIC_InitStructure;
	
	//优先级分组
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);
	
	//配置中断优先级
	NVIC_InitStructure.NVIC_IRQChannel = ADC_IRQ;
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
	
	NVIC_Init(&NVIC_InitStructure);
	
}


void ADCx_Init(void)
{
	ADC_NVIC_Config();
	ADCx_GPIO_Config();
	ADCx_Mode_Config();
}

stm32f10x_it.c

/**
  ******************************************************************************
  * @file    Project/STM32F10x_StdPeriph_Template/stm32f10x_it.c 
  * @author  MCD Application Team
  * @version V3.5.0
  * @date    08-April-2011
  * @brief   Main Interrupt Service Routines.
  *          This file provides template for all exceptions handler and 
  *          peripherals interrupt service routine.
  ******************************************************************************
  * @attention
  *
  * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
  * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
  * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
  * DIRECT, INDIRECT OR CONSEQUENTI
  
  AL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
  * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
  * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
  *
  * <h2><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h2>
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_it.h"

#include "bsp_adc.h"
extern __IO uint16_t ADC_ConvertedValue;

/** @addtogroup STM32F10x_StdPeriph_Template
  * @{
  */

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/

/******************************************************************************/
/*            Cortex-M3 Processor Exceptions Handlers                         */
/******************************************************************************/

/**
  * @brief  This function handles NMI exception.
  * @param  None
  * @retval None
  */
void NMI_Handler(void)
{
}

/**
  * @brief  This function handles Hard Fault exception.
  * @param  None
  * @retval None
  */
void HardFault_Handler(void)
{
  /* Go to infinite loop when Hard Fault exception occurs */
  while (1)
  {
  }
}

/**
  * @brief  This function handles Memory Manage exception.
  * @param  None
  * @retval None
  */
void MemManage_Handler(void)
{
  /* Go to infinite loop when Memory Manage exception occurs */
  while (1)
  {
  }
}

/**
  * @brief  This function handles Bus Fault exception.
  * @param  None
  * @retval None
  */
void BusFault_Handler(void)
{
  /* Go to infinite loop when Bus Fault exception occurs */
  while (1)
  {
  }
}

/**
  * @brief  This function handles Usage Fault exception.
  * @param  None
  * @retval None
  */
void UsageFault_Handler(void)
{
  /* Go to infinite loop when Usage Fault exception occurs */
  while (1)
  {
  }
}

/**
  * @brief  This function handles SVCall exception.
  * @param  None
  * @retval None
  */
void SVC_Handler(void)
{
}

/**
  * @brief  This function handles Debug Monitor exception.
  * @param  None
  * @retval None
  */
void DebugMon_Handler(void)
{
}

/**
  * @brief  This function handles PendSVC exception.
  * @param  None
  * @retval None
  */
void PendSV_Handler(void)
{
}

/**
  * @brief  This function handles SysTick Handler.
  * @param  None
  * @retval None
  */
void SysTick_Handler(void)
{
}


void ADC_IRQHandler(void)
{	
	if (ADC_GetITStatus(ADCx,ADC_IT_EOC)==SET) 
	{
		// 读取ADC的转换值
		ADC_ConvertedValue = ADC_GetConversionValue(ADCx);
	}
	ADC_ClearITPendingBit(ADCx,ADC_IT_EOC);
}

/******************************************************************************/
/*                 STM32F10x Peripherals Interrupt Handlers                   */
/*  Add here the Interrupt Handler for the used peripheral(s) (PPP), for the  */
/*  available peripheral interrupt handler's name please refer to the startup */
/*  file (startup_stm32f10x_xx.s).                                            */
/******************************************************************************/

/**
  * @brief  This function handles PPP interrupt request.
  * @param  None
  * @retval None
  */
/*void PPP_IRQHandler(void)
{
}*/

/**
  * @}
  */ 


/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/

main.c


// ADC 单通道采集,不使用DMA,一般只有ADC2才这样使用,因为ADC2不能使用DMA

#include "stm32f10x.h"
#include "bsp_usart.h"
#include "bsp_adc.h"

extern __IO uint16_t ADC_ConvertedValue;

// 局部变量,用于保存转换计算后的电压值 	 
float ADC_ConvertedValueLocal;        

// 软件延时
void Delay(__IO uint32_t nCount)
{
  for(; nCount != 0; nCount--);
} 

/**
  * @brief  主函数
  * @param  无
  * @retval 无
  */
int main(void)
{	
	// 配置串口
	USART_Config();
	
	// ADC 初始化
	ADCx_Init();
	
	printf("\r\n ----这是一个ADC单通道中断读取实验----\r\n");
	
	while (1)
	{
		ADC_ConvertedValueLocal =(float) ADC_ConvertedValue/4096*3.3; 
	
		printf("\r\n The current AD value = 0x%04X \r\n", 
		       ADC_ConvertedValue); 
		printf("\r\n The current AD value = %f V \r\n",
		       ADC_ConvertedValueLocal); 
		printf("\r\n\r\n");

		Delay(0xffffee);  
	}
}
/*********************************************END OF FILE**********************/

4.2.2-独立模式-单通道-DMA读取

优点:快   不需要写中断服务函数  当数据又多又快的时候使用这个

  1. 初始化ADC用到的GPIO
  2. 初始化ADC、DMA初始化结构体
  3. 配置ADC时钟,配置通道的转换顺序和采样事件
  4. 编写main函数

此处仅提供bsp_adc.c,

#include"bsp_adc.h"

 __IO uint16_t ADC_ConveredValue;

static void ADCx_GPIO_Config(void )
{
	GPIO_InitTypeDef GPIO_InitStructure;
	
	ADC_GPIO_APBxClock_FUN(ADC_GPIO_CLK,ENABLE);
	
	// 配置 ADC IO 引脚模式
	// 必须为模拟输入
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
	GPIO_InitStructure.GPIO_Pin = ADC_PIN;
	
		// 初始化 ADC IO
	GPIO_Init(ADC_PORT, &GPIO_InitStructure);	
}

static void ADCx_Mode_Config(void )
{
	ADC_InitTypeDef ADC_InitStructure;
	DMA_InitTypeDef DMA_InitStructure;
	
	
	ADC_APBxClock_FUN(ADC_CLK,ENABLE);
	//打开DMA时钟
	DMA_AHBxClock_FUN(DMA_CLK,ENABLE);
	
	DMA_InitStructure.DMA_PeripheralBaseAddr = ( uint32_t ) ( & ( ADC_x->DR ) );
	DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&ADC_ConveredValue;
	DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
	DMA_InitStructure.DMA_BufferSize = 1;//一个通道
	DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
	DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable; 
	DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;//16位
	DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
	DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;	
	DMA_InitStructure.DMA_Priority = DMA_Priority_High;
	DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
	DMA_Init(DMA_CHANNEL, &DMA_InitStructure); 
	
	DMA_Cmd(DMA_CHANNEL , ENABLE);
	
	// ADC 模式配置
	// 只使用一个ADC,属于独立模式
	ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
	
	// 禁止扫描模式,多通道才要,单通道不需要
	ADC_InitStructure.ADC_ScanConvMode = DISABLE;
	
	 连续转换模式
	ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
	
	
	// 不用外部触发转换,软件开启即可
	ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
	
	// 转换结果右对齐	
	ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
	
	// 转换通道1个
	ADC_InitStructure.ADC_NbrOfChannel = 1;
		
	// 初始化ADC
	ADC_Init(ADC_x,&ADC_InitStructure);
	
	//配置ADC时钟
	RCC_ADCCLKConfig(RCC_PCLK2_Div8);
	
	//配置通道的转换顺序和采样时间
	ADC_RegularChannelConfig(ADC_x,ADC_CHANNEL,1,ADC_SampleTime_55Cycles5);
	
	//使能ADC DMA请求
	ADC_DMACmd(ADC_x,ENABLE);
	
	//5、使能ADC,准备开始转换
	ADC_Cmd(ADC_x, ENABLE);
	
	//6、校准ADC
	// ADC开始校准
	ADC_StartCalibration(ADC_x);
	// 等待校准完成
	while(ADC_GetCalibrationStatus(ADC_x));
	
	//软件触发ADC,真正开始转换
	ADC_SoftwareStartConvCmd(ADC_x, ENABLE);
	
}



void ADCx_Init(void)
{
	ADCx_GPIO_Config();
	ADCx_Mode_Config();
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/311541.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

自旋锁和互斥锁的区别

自旋锁和互斥锁的区别_自旋锁和互斥锁有什么区别?-CSDN博客

网工内推 | 高级网工,H3C认证优先,朝九晚六,周末双休

01 万德 招聘岗位&#xff1a;高级网络工程师 职责描述&#xff1a; 1、项目交付&#xff1a;项目管理和交付&#xff0c;包括项目前期的规划、实施以及后期的运维支持、项目验收等。 2、技术支持&#xff1a;为客户及合作伙伴提供网上问题远程和现场支持&#xff1b;对公司内…

【MySQL】锁机制

文章目录 一、表级锁和行级锁二、排他锁和共享锁三、InnoDB行级锁行级锁间隙锁意向共享锁和意向排他锁 四、InnoDB表级锁五、死锁六、锁的优化建议 一、表级锁和行级锁 表级锁&#xff1a; 对整张表加锁。开销小&#xff0c;加锁快&#xff0c;不会出现死锁&#xff1b;锁粒度…

msvcp140_codecvt_ids.dll缺失的解决方法,dll文件全面解析

在计算机使用过程中&#xff0c;我们经常会遇到一些错误提示&#xff0c;其中之一就是“msvcp140CODECVTIDS.dll丢失”。那么&#xff0c;msvcp140CODECVTIDS.dll是什么文件&#xff1f;它的作用是什么&#xff1f;为什么会丢失&#xff1f;本文将详细介绍msvcp140CODECVTIDS.d…

你知道程序员如何利用citywork实现财富自由吗?

周末到了&#xff0c;我要去citywalk寻找心灵的呼吸&#xff01;”有谁没有设想过疲惫的工作日之后好好地去走一走&#xff0c;亲近大自然呢&#xff1f;谁又不想在闲暇之余唤起对生活的趣味呢&#xff1f;可是对于我们悲催的打工人而言&#xff0c;没有citywalk&#xff0c;只…

在WindowsServer2012中部署war项目

目录 前言 一.jdk安装 二.Tomact安装 三.MySQL安装 ​编辑​编辑​编辑​编辑​编辑​编辑​编辑 四.开放端口号 MySQL开放端口号 Tomact开放端口号 ​编辑 五.项目部署 1.将war放置在tomact中 2.配置项目sql脚本 3.最终效果 前言 安装Java开发工具包&#xff08…

ROS2——Parameters

节点可以使用参数来配置各项操作&#xff0c;这些参数可以说布尔值、整数、字符串等类型。节点在启动时会读取参数。我们将参数单独列出来&#xff0c;而不是写在源文件中&#xff0c;这样做可以方便我们调试&#xff0c;因为在不同的机器人、环境中&#xff0c;我们需要的参数…

Java并发编程——伪共享和缓存行问题

在Java并发编程中&#xff0c;伪共享&#xff08;False Sharing&#xff09;和缓存行&#xff08;Cache Line&#xff09;是与多线程访问共享数据相关的两个重要概念。 伪共享指的是多个线程同时访问同一个缓存行中的不同变量或数据&#xff0c;其中至少一个线程对其中一个变…

EM planner 论文阅读

论文题目&#xff1a;Baidu Apollo EM Motion Planner 0 前言 EM和Lattice算法对比 EM plannerLattice Planner参数较多&#xff08;DP/QP&#xff0c;Path/Speed&#xff09;参数少且统一化流程复杂流程简单单周期解空间受限简单场景解空间较大能适应复杂场景适合简单场景 …

回归预测 | Matlab基于SMA+WOA+SFO-LSSVM多输入单输出回归预测

回归预测 | Matlab基于SMAWOASFO-LSSVM多输入单输出回归预测 目录 回归预测 | Matlab基于SMAWOASFO-LSSVM多输入单输出回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 SMAWOASFO-LSSVM回归预测 基于黏菌算法鲸鱼算法向日葵算法优化LSSVM回归预测 其中包含三种改进…

ADOV路由和DSR路由matlab对比仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 4.1 ADOV路由&#xff08;Ad hoc On-demand Distance Vector Routing&#xff09; 4.2 DSR路由&#xff08;Dynamic Source Routing&#xff09; 5.完整程序 1.程序功能描述 ADOV路由和DSR…

SQL优化小技巧

在表中建⽴索引&#xff0c;优先考虑 where group by 使⽤到的字段。 查询时尽量避免使⽤select * &#xff0c;只查询需要⽤到的字段。 避免在where⼦句中使⽤关键字两边都是%的模糊查询&#xff0c;尽量在关键字后使⽤模糊查询。 尽量避免在where⼦句中使⽤IN 和NOT IN。 …

【Vue系列】Vue3快速构建项目,以及在已有代码情况首次打开如何初始化依赖项

欢迎来到《小5讲堂》 大家好&#xff0c;我是全栈小5。 这是是《前端》序列文章&#xff0c;每篇文章将以博主理解的角度展开讲解&#xff0c; 特别是针对知识点的概念进行叙说&#xff0c;大部分文章将会对这些概念进行实际例子验证&#xff0c;以此达到加深对知识点的理解和掌…

【AI视野·今日NLP 自然语言处理论文速览 第七十三期】Tue, 9 Jan 2024

AI视野今日CS.NLP 自然语言处理论文速览 Tue, 9 Jan 2024 Totally 80 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers FFSplit: Split Feed-Forward Network For Optimizing Accuracy-Efficiency Trade-off in Language Model Infe…

SpringBoot外部配置文件

✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客 &#x1f49e;当前专栏&#xff1a; 循序渐进学SpringBoot ✨特色专栏&…

三防便携式手持PDA能提高企业仓储数字化管理吗

随着数字化管理的不断普及&#xff0c;企业对于仓储管理的要求也越来越高。在这种背景下&#xff0c;三防便携式手持PDA作为一种智能化的仓储管理设备&#xff0c;具备了多种强大的功能&#xff0c;为企业提供了数字化管理的便利和高效。本文将从PDA的数据采集功能、人脸识别功…

RK3399平台入门到精通系列讲解(基础篇)__LITTLE_ENDIAN_BITFIELD 宏的使用

🚀返回总目录 文章目录 一、什么是字节序二、小端模式(Little-Endian)三、大端模式(Big-Endian)四、__LITTLE_ENDIAN_BITFIELD 使用案例一、什么是字节序 在计算机中,数据是以最原始的二进制 0 和 1 的方式被存储的。在大多数现代计算机体系架构中,计算机的最小可寻址数…

蓝桥杯练习题(三)

&#x1f4d1;前言 本文主要是【算法】——蓝桥杯练习题&#xff08;三&#xff09;的文章&#xff0c;如果有什么需要改进的地方还请大佬指出⛺️ &#x1f3ac;作者简介&#xff1a;大家好&#xff0c;我是听风与他&#x1f947; ☁️博客首页&#xff1a;CSDN主页听风与他 …

【Kafka-3.x-教程】-【四】Kafka-消费者-Consumer

【Kafka-3.x-教程】专栏&#xff1a; 【Kafka-3.x-教程】-【一】Kafka 概述、Kafka 快速入门 【Kafka-3.x-教程】-【二】Kafka-生产者-Producer 【Kafka-3.x-教程】-【三】Kafka-Broker、Kafka-Kraft 【Kafka-3.x-教程】-【四】Kafka-消费者-Consumer 【Kafka-3.x-教程】-【五…

Spring MVC——Spring MVC(1)

1.SpringMVC概述 1.1.MVC介绍 MVC是一种设计模式&#xff0c;将软件按照模型、视图、控制器来划分&#xff1a; M&#xff1a;Model&#xff0c;模型层&#xff0c;指工程中的JavaBean&#xff0c;作用是处理数据 JavaBean分为两类&#xff1a; 一类称为实体类Bean&#xff1…