List列表操作中的坑

使用 Arrays.asList 把数据转换为 List 的三个坑

在如下代码中,我们初始化三个数字的 int[]数组,然后使用 Arrays.asList 把数组转换为 List:

int[] arr = {1, 2, 3};
List list = Arrays.asList(arr);
log.info("list:{} size:{} class:{}", list, list.size(), list.get(0).getClass());

但,这样初始化的 List 并不是我们期望的包含 3 个数字的 List。通过日志可以发现,这个 List 包含的其实是一个 int 数组,整个 List 的元素个数是 1,元素类型是整数数组。

12:50:39.445 [main] INFO org.geekbang.time.commonmistakes.collection.aslist.AsListApplication - list:[[I@1c53fd30] size:1 class:class [I

其原因是,只能是把 int 装箱为 Integer,不可能把 int 数组装箱为 Integer 数组。我们知道,Arrays.asList 方法传入的是一个泛型 T 类型可变参数,最终 int 数组整体作为了一个对象成为了泛型类型 T:

public static <T> List<T> asList(T... a) {
    return new ArrayList<>(a);
}

直接遍历这样的 List 必然会出现 Bug,修复方式有两种,如果使用 Java8 以上版本可以使用 Arrays.stream 方法来转换,否则可以把 int 数组声明为包装类型 Integer 数组:

int[] arr1 = {1, 2, 3};
List list1 = Arrays.stream(arr1).boxed().collect(Collectors.toList());
log.info("list:{} size:{} class:{}", list1, list1.size(), list1.get(0).getClass());


Integer[] arr2 = {1, 2, 3};
List list2 = Arrays.asList(arr2);
log.info("list:{} size:{} class:{}", list2, list2.size(), list2.get(0).getClass());

 修复后的代码得到如下日志,可以看到 List 具有三个元素,元素类型是 Integer:

13:10:57.373 [main] INFO org.geekbang.time.commonmistakes.collection.aslist.AsListApplication - list:[1, 2, 3] size:3 class:class java.lang.Integer

可以看到第一个坑是,不能直接使用 Arrays.asList 来转换基本类型数组。那么,我们获得了正确的 List,是不是就可以像普通的 List 那样使用了呢?我们继续往下看。

把三个字符串 1、2、3 构成的字符串数组,使用 Arrays.asList 转换为 List 后,将原始字符串数组的第二个字符修改为 4,然后为 List 增加一个字符串 5,最后数组和 List 会是怎样呢?

String[] arr = {"1", "2", "3"};
List list = Arrays.asList(arr);
arr[1] = "4";
try {
    list.add("5");
} catch (Exception ex) {
    ex.printStackTrace();
}
log.info("arr:{} list:{}", Arrays.toString(arr), list);

可以看到,日志里有一个 UnsupportedOperationException,为 List 新增字符串 5 的操作失败了,而且把原始数组的第二个元素从 2 修改为 4 后,asList 获得的 List 中的第二个元素也被修改为 4 了:

java.lang.UnsupportedOperationException
  at java.util.AbstractList.add(AbstractList.java:148)
  at java.util.AbstractList.add(AbstractList.java:108)
  at org.geekbang.time.commonmistakes.collection.aslist.AsListApplication.wrong2(AsListApplication.java:41)
  at org.geekbang.time.commonmistakes.collection.aslist.AsListApplication.main(AsListApplication.java:15)
13:15:34.699 [main] INFO org.geekbang.time.commonmistakes.collection.aslist.AsListApplication - arr:[1, 4, 3] list:[1, 4, 3]

这里,又引出了两个坑。

第二个坑,Arrays.asList 返回的 List 不支持增删操作。Arrays.asList 返回的 List 并不是我们期望的 java.util.ArrayList,而是 Arrays 的内部类 ArrayList。ArrayList 内部类继承自 AbstractList 类,并没有覆写父类的 add 方法,而父类中 add 方法的实现,就是抛出 UnsupportedOperationException。相关源码如下所示:

public static <T> List<T> asList(T... a) {
    return new ArrayList<>(a);
}

private static class ArrayList<E> extends AbstractList<E>
    implements RandomAccess, java.io.Serializable
{
    private final E[] a;


    ArrayList(E[] array) {
        a = Objects.requireNonNull(array);
    }
...

    @Override
    public E set(int index, E element) {
        E oldValue = a[index];
        a[index] = element;
        return oldValue;
    }
    ...
}

public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> {
...
public void add(int index, E element) {
        throw new UnsupportedOperationException();
    }
}

第三个坑,对原始数组的修改会影响到我们获得的那个 List。看一下 ArrayList 的实现,可以发现 ArrayList 其实是直接使用了原始的数组。所以,我们要特别小心,把通过 Arrays.asList 获得的 List 交给其他方法处理,很容易因为共享了数组,相互修改产生 Bug。

修复方式比较简单,重新 new 一个 ArrayList 初始化 Arrays.asList 返回的 List 即可:

String[] arr = {"1", "2", "3"};
List list = new ArrayList(Arrays.asList(arr));
arr[1] = "4";
try {
    list.add("5");
} catch (Exception ex) {
    ex.printStackTrace();
}
log.info("arr:{} list:{}", Arrays.toString(arr), list);

修改后的代码实现了原始数组和 List 的“解耦”,不再相互影响。同时,因为操作的是真正的 ArrayList,add 也不再出错:

13:34:50.829 [main] INFO org.geekbang.time.commonmistakes.collection.aslist.AsListApplication - arr:[1, 4, 3] list:[1, 2, 3, 5]

使用 List.subList 进行切片操作居然会导致 OOM?

业务开发时常常要对 List 做切片处理,即取出其中部分元素构成一个新的 List,我们通常会想到使用 List.subList 方法。但,和 Arrays.asList 的问题类似,List.subList 返回的子 List 不是一个普通的 ArrayList。这个子 List 可以认为是原始 List 的视图,会和原始 List 相互影响。如果不注意,很可能会因此产生 OOM 问题。接下来,我们就一起分析下其中的坑。

如下代码所示,定义一个名为 data 的静态 List 来存放 Integer 的 List,也就是说 data 的成员本身是包含了多个数字的 List。循环 1000 次,每次都从一个具有 10 万个 Integer 的 List 中,使用 subList 方法获得一个只包含一个数字的子 List,并把这个子 List 加入 data 变量:

private static List<List<Integer>> data = new ArrayList<>();

private static void oom() {
    for (int i = 0; i < 1000; i++) {
        List<Integer> rawList = IntStream.rangeClosed(1, 100000).boxed().collect(Collectors.toList());
        data.add(rawList.subList(0, 1));
    }
}

 你可能会觉得,这个 data 变量里面最终保存的只是 1000 个具有 1 个元素的 List,不会占用很大空间,但程序运行不久就出现了 OOM:

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
  at java.util.Arrays.copyOf(Arrays.java:3181)
  at java.util.ArrayList.grow(ArrayList.java:265)

出现 OOM 的原因是,循环中的 1000 个具有 10 万个元素的 List 始终得不到回收,因为它始终被 subList 方法返回的 List 强引用。那么,返回的子 List 为什么会强引用原始的 List,它们又有什么关系呢?我们再继续做实验观察一下这个子 List 的特性。

首先初始化一个包含数字 1 到 10 的 ArrayList,然后通过调用 subList 方法取出 2、3、4;随后删除这个 SubList 中的元素数字 3,并打印原始的 ArrayList;最后为原始的 ArrayList 增加一个元素数字 0,遍历 SubList 输出所有元素:

List<Integer> list = IntStream.rangeClosed(1, 10).boxed().collect(Collectors.toList());
List<Integer> subList = list.subList(1, 4);
System.out.println(subList);
subList.remove(1);
System.out.println(list);
list.add(0);
try {
    subList.forEach(System.out::println);
} catch (Exception ex) {
    ex.printStackTrace();
}

代码运行后得到如下输出:

[2, 3, 4]
[1, 2, 4, 5, 6, 7, 8, 9, 10]
java.util.ConcurrentModificationException
  at java.util.ArrayList$SubList.checkForComodification(ArrayList.java:1239)
  at java.util.ArrayList$SubList.listIterator(ArrayList.java:1099)
  at java.util.AbstractList.listIterator(AbstractList.java:299)
  at java.util.ArrayList$SubList.iterator(ArrayList.java:1095)
  at java.lang.Iterable.forEach(Iterable.java:74)

可以看到两个现象:

  • 原始 List 中数字 3 被删除了,说明删除子 List 中的元素影响到了原始 List;
  • 尝试为原始 List 增加数字 0 之后再遍历子 List,会出现 ConcurrentModificationException

我们分析下 ArrayList 的源码,看看为什么会是这样。

1 public class ArrayList<E> extends AbstractList<E>
2         implements List<E>, RandomAccess, Cloneable, java.io.Serializable
3 {
4     protected transient int modCount = 0;
5   private void ensureExplicitCapacity(int minCapacity) {
6         modCount++;
7         // overflow-conscious code
8         if (minCapacity - elementData.length > 0)
9             grow(minCapacity);
10    }
11  public void add(int index, E element) {
12    rangeCheckForAdd(index);
13
14    ensureCapacityInternal(size + 1);  // Increments modCount!!
15    System.arraycopy(elementData, index, elementData, index + 1,
16                     size - index);
17    elementData[index] = element;
18    size++;
19  }
20
21  public List<E> subList(int fromIndex, int toIndex) {
22    subListRangeCheck(fromIndex, toIndex, size);
23    return new SubList(this, offset, fromIndex, toIndex);
24  }
25
26  private class SubList extends AbstractList<E> implements RandomAccess {
27    private final AbstractList<E> parent;
28    private final int parentOffset;
29    private final int offset;
30    int size;
31
32    SubList(AbstractList<E> parent,
33          int offset, int fromIndex, int toIndex) {
34        this.parent = parent;
35        this.parentOffset = fromIndex;
36        this.offset = offset + fromIndex;
37        this.size = toIndex - fromIndex;
38        this.modCount = ArrayList.this.modCount;
39    }
40
41        public E set(int index, E element) {
42            rangeCheck(index);
43            checkForComodification();
44            return l.set(index+offset, element);
45        }
46
47    public ListIterator<E> listIterator(final int index) {
48                checkForComodification();
49                ...
50    }
51
52    private void checkForComodification() {
53        if (ArrayList.this.modCount != this.modCount)
54            throw new ConcurrentModificationException();
55    }
56    ...
57  }
58}

第一,ArrayList 维护了一个叫作 modCount 的字段,表示集合结构性修改的次数。所谓结构性修改,指的是影响 List 大小的修改,所以 add 操作必然会改变 modCount 的值。

第二,分析第 21 到 24 行的 subList 方法可以看到,获得的 List 其实是内部类 SubList,并不是普通的 ArrayList,在初始化的时候传入了 this。

第三,分析第 26 到 39 行代码可以发现,这个 SubList 中的 parent 字段就是原始的 List。SubList 初始化的时候,并没有把原始 List 中的元素复制到独立的变量中保存。我们可以认为 SubList 是原始 List 的视图,并不是独立的 List。双方对元素的修改会相互影响,而且 SubList 强引用了原始的 List,所以大量保存这样的 SubList 会导致 OOM。

第四,分析第 47 到 55 行代码可以发现,遍历 SubList 的时候会先获得迭代器,比较原始 ArrayList modCount 的值和 SubList 当前 modCount 的值。获得了 SubList 后,我们为原始 List 新增了一个元素修改了其 modCount,所以判等失败抛出 ConcurrentModificationException 异常。

既然 SubList 相当于原始 List 的视图,那么避免相互影响的修复方式有两种:

  • 一种是,不直接使用 subList 方法返回的 SubList,而是重新使用 new ArrayList,在构造方法传入 SubList,来构建一个独立的 ArrayList;
  • 另一种是,对于 Java 8 使用 Stream 的 skip 和 limit API 来跳过流中的元素,以及限制流中元素的个数,同样可以达到 SubList 切片的目的。
//方式一:
List<Integer> subList = new ArrayList<>(list.subList(1, 4));

//方式二:
List<Integer> subList = list.stream().skip(1).limit(3).collect(Collectors.toList());

修复后代码输出如下:

[2, 3, 4]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
2
4

可以看到,删除 SubList 的元素不再影响原始 List,而对原始 List 的修改也不会再出现 List 迭代异常。

一定要让合适的数据结构做合适的事情

第一个误区是,使用数据结构不考虑平衡时间和空间。

首先,定义一个只有一个 int 类型订单号字段的 Order 类:

@Data
@NoArgsConstructor
@AllArgsConstructor
static class Order {
    private int orderId;
}

然后,定义listSearch (elementCount ,loopCount ),初始化一个具有 elementCount 个订单对象的 ArrayList,循环 loopCount 次搜索这个 ArrayList,每次随机搜索一个订单号:

private static Object listSearch(int elementCount, int loopCount) {
    List<Order> list = IntStream.rangeClosed(1, elementCount).mapToObj(i -> new Order(i)).collect(Collectors.toList());
    IntStream.rangeClosed(1, loopCount).forEach(i -> {
        int search = ThreadLocalRandom.current().nextInt(elementCount);
        Order result = list.stream().filter(order -> order.getOrderId() == search).findFirst().orElse(null);
        Assert.assertTrue(result != null && result.getOrderId() == search);
    });
    return list;
}

随后,定义另一个 mapSearch 方法,从一个具有 elementCount 个元素的 Map 中循环 loopCount 次查找随机订单号。Map 的 Key 是订单号,Value 是订单对象:

private static Object mapSearch(int elementCount, int loopCount) {
    Map<Integer, Order> map = IntStream.rangeClosed(1, elementCount).boxed().collect(Collectors.toMap(Function.identity(), i -> new Order(i)));
    IntStream.rangeClosed(1, loopCount).forEach(i -> {
        int search = ThreadLocalRandom.current().nextInt(elementCount);
        Order result = map.get(search);
        Assert.assertTrue(result != null && result.getOrderId() == search);
    });
    return map;
}

我们知道,搜索 ArrayList 的时间复杂度是 O(n),而 HashMap 的 get 操作的时间复杂度是 O(1)。所以,要对大 List 进行单值搜索的话,可以考虑使用 HashMap,其中 Key 是要搜索的值,Value 是原始对象,会比使用 ArrayList 有非常明显的性能优势。

如下代码所示,对 100 万个元素的 ArrayList 和 HashMap,分别调用 listSearch 和 mapSearch 方法进行 1000 次搜索:

int elementCount = 1000000;
int loopCount = 1000;
StopWatch stopWatch = new StopWatch();
stopWatch.start("listSearch");
Object list = listSearch(elementCount, loopCount);
System.out.println(ObjectSizeCalculator.getObjectSize(list));
stopWatch.stop();
stopWatch.start("mapSearch");
Object map = mapSearch(elementCount, loopCount);
stopWatch.stop();
System.out.println(ObjectSizeCalculator.getObjectSize(map));
System.out.println(stopWatch.prettyPrint());

可以看到,仅仅是 1000 次搜索,listSearch 方法耗时 3.3 秒,而 mapSearch 耗时仅仅 108 毫秒。

即使我们要搜索的不是单值而是条件区间,也可以尝试使用 HashMap 来进行“搜索性能优化”。如果你的条件区间是固定的话,可以提前把 HashMap 按照条件区间进行分组,Key 就是不同的区间。

的确,如果业务代码中有频繁的大 ArrayList 搜索,使用 HashMap 性能会好很多。类似,如果要对大 ArrayList 进行去重操作,也不建议使用 contains 方法,而是可以考虑使用 HashSet 进行去重。说到这里,还有一个问题,使用 HashMap 是否会牺牲空间呢?

为此,我们使用 ObjectSizeCalculator 工具打印 ArrayList 和 HashMap 的内存占用,可以看到 ArrayList 占用内存 21M,而 HashMap 占用的内存达到了 72M,是 List 的三倍多。进一步使用 MAT 工具分析堆可以再次证明,ArrayList 在内存占用上性价比很高,77% 是实际的数据(如第 1 个图所示,16000000/20861992),而 HashMap 的“含金量”只有 22%(如第 2 个图所示,16000000/72386640)。

 所以,在应用内存吃紧的情况下,我们需要考虑是否值得使用更多的内存消耗来换取更高的性能。这里我们看到的是平衡的艺术,空间换时间,还是时间换空间,只考虑任何一个方面都是不对的。

第二个误区是,过于迷信教科书的大 O 时间复杂度。

数据结构中要实现一个列表,有基于连续存储的数组和基于指针串联的链表两种方式。在 Java 中,有代表性的实现是 ArrayList 和 LinkedList,前者背后的数据结构是数组,后者则是(双向)链表。

在选择数据结构的时候,我们通常会考虑每种数据结构不同操作的时间复杂度,以及使用场景两个因素。查看这里,你可以看到数组和链表大 O 时间复杂度的显著差异:

  • 对于数组,随机元素访问的时间复杂度是 O(1),元素插入操作是 O(n);
  • 对于链表,随机元素访问的时间复杂度是 O(n),元素插入操作是 O(1)。

那么,在大量的元素插入、很少的随机访问的业务场景下,是不是就应该使用 LinkedList 呢?接下来,我们写一段代码测试下两者随机访问和插入的性能吧。

定义四个参数一致的方法,分别对元素个数为 elementCount 的 LinkedList 和 ArrayList,循环 loopCount 次,进行随机访问和增加元素到随机位置的操作:

//LinkedList访问
private static void linkedListGet(int elementCount, int loopCount) {
    List<Integer> list = IntStream.rangeClosed(1, elementCount).boxed().collect(Collectors.toCollection(LinkedList::new));
    IntStream.rangeClosed(1, loopCount).forEach(i -> list.get(ThreadLocalRandom.current().nextInt(elementCount)));
}

//ArrayList访问
private static void arrayListGet(int elementCount, int loopCount) {
    List<Integer> list = IntStream.rangeClosed(1, elementCount).boxed().collect(Collectors.toCollection(ArrayList::new));
    IntStream.rangeClosed(1, loopCount).forEach(i -> list.get(ThreadLocalRandom.current().nextInt(elementCount)));
}

//LinkedList插入
private static void linkedListAdd(int elementCount, int loopCount) {
    List<Integer> list = IntStream.rangeClosed(1, elementCount).boxed().collect(Collectors.toCollection(LinkedList::new));
    IntStream.rangeClosed(1, loopCount).forEach(i -> list.add(ThreadLocalRandom.current().nextInt(elementCount),1));
}

//ArrayList插入
private static void arrayListAdd(int elementCount, int loopCount) {
    List<Integer> list = IntStream.rangeClosed(1, elementCount).boxed().collect(Collectors.toCollection(ArrayList::new));
    IntStream.rangeClosed(1, loopCount).forEach(i -> list.add(ThreadLocalRandom.current().nextInt(elementCount),1));
}

测试代码如下,10 万个元素,循环 10 万次:

int elementCount = 100000;
int loopCount = 100000;
StopWatch stopWatch = new StopWatch();
stopWatch.start("linkedListGet");
linkedListGet(elementCount, loopCount);
stopWatch.stop();
stopWatch.start("arrayListGet");
arrayListGet(elementCount, loopCount);
stopWatch.stop();
System.out.println(stopWatch.prettyPrint());


StopWatch stopWatch2 = new StopWatch();
stopWatch2.start("linkedListAdd");
linkedListAdd(elementCount, loopCount);
stopWatch2.stop();
stopWatch2.start("arrayListAdd");
arrayListAdd(elementCount, loopCount);
stopWatch2.stop();
System.out.println(stopWatch2.prettyPrint());

运行结果可能会让你大跌眼镜。在随机访问方面,我们看到了 ArrayList 的绝对优势,耗时只有 11 毫秒,而 LinkedList 耗时 6.6 秒,这符合上面我们所说的时间复杂度;但,随机插入操作居然也是 LinkedList 落败,耗时 9.3 秒,ArrayList 只要 1.5 秒:

---------------------------------------------
ns         %     Task name
---------------------------------------------
6604199591  100%  linkedListGet
011494583  000%  arrayListGet


StopWatch '': running time = 10729378832 ns
---------------------------------------------
ns         %     Task name
---------------------------------------------
9253355484  086%  linkedListAdd
1476023348  014%  arrayListAdd

翻看 LinkedList 源码发现,插入操作的时间复杂度是 O(1) 的前提是,你已经有了那个要插入节点的指针。但,在实现的时候,我们需要先通过循环获取到那个节点的 Node,然后再执行插入操作。前者也是有开销的,不可能只考虑插入操作本身的代价:

public void add(int index, E element) {
    checkPositionIndex(index);

    if (index == size)
        linkLast(element);
    else
        linkBefore(element, node(index));
}

Node<E> node(int index) {
    // assert isElementIndex(index);

    if (index < (size >> 1)) {
        Node<E> x = first;
        for (int i = 0; i < index; i++)
            x = x.next;
        return x;
    } else {
        Node<E> x = last;
        for (int i = size - 1; i > index; i--)
            x = x.prev;
        return x;
    }
}

所以,对于插入操作,LinkedList 的时间复杂度其实也是 O(n)。继续做更多实验的话你会发现,在各种常用场景下,LinkedList 几乎都不能在性能上胜出 ArrayList。

这告诉我们,任何东西理论上和实际上是有差距的,请勿迷信教科书的理论

重点回顾

第一,想当然认为,Arrays.asList 和 List.subList 得到的 List 是普通的、独立的 ArrayList,在使用时出现各种奇怪的问题。

  • Arrays.asList 得到的是 Arrays 的内部类 ArrayList,List.subList 得到的是 ArrayList 的内部类 SubList,不能把这两个内部类转换为 ArrayList 使用。
  • Arrays.asList 直接使用了原始数组,可以认为是共享“存储”,而且不支持增删元素;List.subList 直接引用了原始的 List,也可以认为是共享“存储”,而且对原始 List 直接进行结构性修改会导致 SubList 出现异常。
  • 对 Arrays.asList 和 List.subList 容易忽略的是,新的 List 持有了原始数据的引用,可能会导致原始数据也无法 GC 的问题,最终导致 OOM。

第二,想当然认为,Arrays.asList 一定可以把所有数组转换为正确的 List。当传入基本类型数组的时候,List 的元素是数组本身,而不是数组中的元素。

第三,想当然认为,内存中任何集合的搜索都是很快的,结果在搜索超大 ArrayList 的时候遇到性能问题。我们考虑利用 HashMap 哈希表随机查找的时间复杂度为 O(1) 这个特性来优化性能,不过也要考虑 HashMap 存储空间上的代价,要平衡时间和空间。

第四,想当然认为,链表适合元素增删的场景,选用 LinkedList 作为数据结构。在真实场景中读写增删一般是平衡的,而且增删不可能只是对头尾对象进行操作,可能在 90% 的情况下都得不到性能增益,建议使用之前通过性能测试评估一下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/311501.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

每天刷两道题——第十二天+第十三天

1.1合并区间 以数组 i n t e r v a l s intervals intervals 表示若干个区间的集合&#xff0c;其中单个区间为 i n t e r v a l s [ i ] [ s t a r t i , e n d i ] intervals[i] [starti, endi] intervals[i][starti,endi] 。请你合并所有重叠的区间&#xff0c;并返回 …

Visual Studio Code 连接远程服务器方法

1、输入用户名和服务器ip连接远程服务器 2、选择配置文件 配置文件路径&#xff1a;C:\Users\Administrator\.ssh\config config的内容大致如下&#xff1a; Host 192.168.134.3HostName 192.168.134.3User zhangshanHost 192.168.134.3HostName 192.168.134.3User lisiHost…

基础篇_快速入门(Java简介,安装JDK,cmd命令行运行Java文件产生乱码问题的解决方式,IDE工具,实用工具)

文章目录 一. Java 简介1. JVM2. JRE3. JDK 二. 安装 JDK1. 下载和安装2. 配置 Path3. 配置 JAVA_HOME&#xff08;选讲&#xff09;优化 三. 入门案例1. 第一行代码1) jshell2) 代码解读总结 3) 为何要分成对象与方法 2. 第一份源码1) 源码结构2) 编写 java 源代码3) 编译 jav…

聊一聊 C# 线程切换后上下文都去了哪里

一&#xff1a;背景 1. 讲故事 总会有一些朋友问一个问题&#xff0c;在 Windows 中线程做了上下文切换&#xff0c;请问被切的线程他的寄存器上下文都去了哪里&#xff1f;能不能给我挖出来&#xff1f;这个问题其实比较底层&#xff0c;如果对操作系统没有个体系层面的理解…

groovy XmlParser 递归遍历 xml 文件,修改并保存

使用 groovy.util.XmlParser 解析 xml 文件&#xff0c;对文件进行修改&#xff08;新增标签&#xff09;&#xff0c;然后保存。 是不是 XmlParser 没有提供方法遍历每个节点&#xff0c;难道要自己写&#xff1f; 什么是递归&#xff1f; 不用说&#xff0c;想必都懂得~ …

基于Pixhawk和ROS搭建自主无人车(一):底盘控制篇

参考 ArduPilot Development超维空间科技乐迪MiniPix车船使用说明书 1. 硬件篇 1.1 底盘构成一览 1.2 底盘接线示意 2. 软件篇 2.1 APM 固件下载 pixhawk 是硬件平台&#xff0c;PX4 是 pixhawk 的原生固件&#xff0c;APM&#xff08;Ardupilot Mega&#xff09;是硬件平台…

C++里main函数int main(int argc, char **argv)

C里main函数int main(int argc, char **argv), 这两个参数argc和argv分别是什么

安全帽/反光衣检测AI智能分析网关V4如何查看告警信息并进行处理?

智能分析网关V4属于高性能、低功耗的软硬一体AI边缘计算硬件设备&#xff0c;目前拥有3种型号&#xff08;8路/16路/32路&#xff09;&#xff0c;支持Caffe / DarkNet / TensorFlow / PyTorch / MXNet / ONNX / PaddlePaddle等主流深度学习框架。硬件内部署了近40种AI算法模型…

9个icon图标网站,海量免费矢量图标库!

​划到最后“阅读原文”——领取工具包&#xff08;超过1000工具&#xff0c;免费素材网站分享和行业报告&#xff09; Hi&#xff0c;我是胡猛夫~&#xff0c;专注于分享各类价值网站、高效工具&#xff01; 更多内容&#xff0c;更多资源&#xff0c;欢迎交流&#xff01;公…

MacOS安装Miniforge、Tensorflow、Jupyter Lab等(2024年最新)

大家好&#xff0c;我是邵奈一&#xff0c;一个不务正业的程序猿、正儿八经的斜杠青年。 1、世人称我为&#xff1a;被代码耽误的诗人、没天赋的书法家、五音不全的歌手、专业跑龙套演员、不合格的运动员… 2、这几年&#xff0c;我整理了很多IT技术相关的教程给大家&#xff0…

应用案例 | 基于三维机器视觉的自动化无序分拣解决方案

​ 近年来&#xff0c;电商行业蓬勃发展&#xff0c;订单的海量化、订单类型的碎片化&#xff0c;使物流行业朝着“多品种、无边界、分类广”的方向迅速发展。根据许多研究机构的预测&#xff0c;电子商务销售额预计将以每年两位数的速度增长&#xff0c;推动整个行业的规模不…

【排序】快速排序(C语言实现)

文章目录 前言1. Hoare思想2. 挖坑法3. 前后指针法4. 三路划分5. 快速排序的一些小优化5.1 三数取中常规的三数取中伪随机的三数取中 5.2 小区间优化 6. 非递归版本的快排7. 快速排序的特性总结 前言 快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法&#xff0c;其…

Leetcode 416 分割等和子集

题意理解&#xff1a; 给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集&#xff0c;使得两个子集的元素和相等。 即将数组的元素分成两组&#xff0c;每组数值sum(nums)/2 若能分成这样的两组&#xff0c;则返回true,否则返回false 本质上…

国标28181平台的手机视频监控客户端的电子地图功能对比

目 录 一、手机客户端 1、概述 2、具体功能简述 二、电子地图功能 1、经纬度定位 2、附近设备 3、实时浏览功能 4、录像回放 5、缩放功能 三、手机web客户端和CS客户端上的电子地图功能对比 1、对比表 2、测距&#xff08;PC客户端功能&#xff09; 3…

【分布式技术】rsync远程同步服务

目录 一、rsync&#xff08;远程同步&#xff09; 二、实操rsync远程文件同步 准备一个服务端192.168.20.18以及一个客户端192.168.20.30 1、服务端搭建&#xff1a;先完成服务端配置&#xff0c;启动服务 rsync拓展 1、关于rsyncd服务的端口号 2、rsync和scp的区别 2、测…

在qemu虚拟机环境下,使用kgdb调试kernel

enable kgdb的情况下&#xff0c;使用qemu启动kernel 1&#xff0c;需要先在内核配置中增加kgdb的支持 2&#xff0c;启动qemu虚拟机时&#xff0c;增加参数-s -S&#xff0c;这两个参数会使得kernel在启动之后遇到的第一个指令等待gdb连接 例子&#xff1a; /qemu-project…

爬虫之牛刀小试(三):爬取中国天气网全国天气

天气网&#xff1a; import requests from bs4 import BeautifulSoup import time from pyecharts.charts import Bar from pyecharts import options as optsurl_hb http://www.weather.com.cn/textFC/hb.shtml url_db http://www.weather.com.cn/textFC/db.shtml url_hd …

RocketMQ Dashboard可视化工具

RocketMQ Dashboard 将 RocketMQ的相关指标展示在web页面 &#xff0c;支持以可视化工具代替 Topic 配置、Broker 管理等命令行操作。 官方文档地址&#xff1a;RocketMQ Dashboard | RocketMQ 目录 1.下载安装 1.1 系统要求&#xff1a; 1.2 源码安装 1.3 访问页面 2.功…

微信小程序地图展示区轮廓+展示指定地区标点气泡

需求&#xff1a;显示当前地区所有的学校列表&#xff1a;名称。区域显示区域名称下面所属学校数量 根据用户缩小放大当前区域&#xff08;大于12显示区&#xff0c;小于12显示当前区学校列表&#xff09;&#xff0c;获取&#xff1a;regionchange的type&#xff1a;end数据&…

中央处理器CPU(1)----指令周期和微程序

前言&#xff1a;由于期末复习计算机组成效率太慢所以抽时间写一下文章总结一下思路&#xff0c;理解不是很深&#xff0c;欢迎各位不吝赐教。 由于时间不是很充分&#xff0c;所以有些考点由于我们不考试&#xff0c;一笔带过了。 我这是期末复习总结&#xff0c;不是考研知识…