基于深度学习的高精度鸽子检测识别系统(PyTorch+Pyside6+YOLOv5模型)

摘要:基于深度学习的高精度鸽子检测识别系统可用于日常生活中或野外来检测与定位鸽子目标,利用深度学习算法可实现图片、视频、摄像头等方式的鸽子目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用Pysdie6库来搭建页面展示系统,同时支持ONNX、PT等模型作为权重模型的输出。本系统支持的功能包括鸽子训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;摄像头的上传、检测、可视化结果展示与结束检测;已检测目标列表、位置信息;前向推理用时。另外本鸽子检测识别系统同时支持原始图像与检测结果图像的同时展示,原始视频与检测结果视频的同时展示。本博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv5是单阶段目标检测算法YOLO的第五代,根据实验得出结论,其在速度与准确性能方面都有了明显提升,开源的代码可见https://github.com/ultralytics/yolov5。因此本博文利用YOLOv5检测算法实现一种高精度鸽子识别检测模型,再搭配上Pyside6库写出界面系统,完成目标检测识别页面的开发。注意到YOLO系列算法的最新进展已有YOLOv6、YOLOv7、YOLOv8等算法,将本系统中检测算法替换为最新算法的代码也将在后面发布,欢迎关注收藏。

环境搭建

(1)下载本文件源码,再用CMD打开窗口
(2)利用Conda创建环境(Anacodna),conda create -n yolo5 python=3.8 然后安装torch和torchvision(pip install torch1.10.0+cu113 torchvision0.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple)其中-i https://pypi.tuna.tsinghua.edu.cn/simple代表使用清华源,这行命令要求nvidia-smi显示的CUDA版本>=11.3,最后安装剩余依赖包使用:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

在这里插入图片描述

(3)安装Pyside6库 pip install pyside6==6.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)对于windows系统下的pycocotools库的安装:pip install pycocotools-windows -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。希望大家可以喜欢,初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及。engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化信息的设置。
在这里插入图片描述
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图片进行检测与识别。
请添加图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
请添加图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

视频选择、检测与导出

用户可以点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面的左上方显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面的左上方显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频或打开摄像按钮来上传图像、视频或打开摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv5,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题,通过直接预测物体中心点的坐标来代替Anchor框。此外,YOLOv5使用SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。YOLOv5s模型的整体结构如下图所示。

在这里插入图片描述

YOLOv5网络结构是由Input、Backbone、Neck、Prediction组成。YOLOv5的Input部分是网络的输入端,采用Mosaic数据增强方式,对输入数据随机裁剪,然后进行拼接。Backbone是YOLOv5提取特征的网络部分,特征提取能力直接影响整个网络性能。在特征提取阶段,YOLOv5使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。在Neck阶段使用连续的卷积核C3结构块融合特征图。在Prediction阶段,模型使用结果特征图预测目标的中心坐标与尺寸信息。博主觉得YOLOv5不失为一种目标检测的高性能解决方案,能够以较高的准确率对目标进行分类与定位。当然现在YOLOv6、YOLOv7、YOLOv8等算法也在不断提出和改进,后续博主也会将这些算法融入到本系统中,敬请期待。

数据集介绍

本系统使用的鸽子数据集手动标注了鸽子这一个类别,数据集总计372张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的鸽子检测识别数据集包含训练集259张图片,验证集113张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
在这里插入图片描述

关键代码解析

本系统的深度学习模型使用PyTorch实现,基于YOLOv5算法进行目标检测。在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。
在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv5算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、PyQt等。
在这里插入图片描述
在这里插入图片描述

Pyside6界面设计

Pyside6是Python语言的GUI编程解决方案之一,可以快速地为Python程序创建GUI应用。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的鸽子数据集进行训练,使用了YOLOv5算法对数据集训练,总计训练了300个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv5模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv5模型对鸽子数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述
在这里插入图片描述

综上,本博文训练得到的YOLOv5模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。
其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、苹果检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。
完整项目目录如下所示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/30972.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java8 List集合如何指定打印分隔符

目录 背景方法一:String.join(推荐)方法二:Collectors.joining总结 背景 无论是在学习还是日常的应用开发过程中,我们经常会需要使用分隔符将 List 集合打印出来。 如下所示: import java.util.Arrays;pub…

GPT模型支持下的Python-GEE遥感云大数据分析、管理与可视化技术及多领域案例实践

随着航空、航天、近地空间等多个遥感平台的不断发展,近年来遥感技术突飞猛进。由此,遥感数据的空间、时间、光谱分辨率不断提高,数据量也大幅增长,使其越来越具有大数据特征。对于相关研究而言,遥感大数据的出现为其提…

基于flask的web应用开发——搭建一个云盘

目录 0. 前言1. 实现开放下载链接2. 稍加改装3. 效果演示4. 云服务器项目部署 0. 前言 本节利用 flask 开放下载链接 操作系统:Windows10 家庭版 开发环境:Pycahrm Comunity 2022.3 Python解释器版本:Python3.8 第三方库:fla…

CSS基础学习--14 Position(定位)

一、定义 position属性指定了元素的定位类型 position 属性的五个值: staticrelativefixedabsolutesticky 元素可以使用的顶部,底部,左侧和右侧属性定位。然而,这些属性无法工作,除非是先设定position属性。他们也有…

leetcode90. 子集 II(java)

子集II leetcode90. 子集 II题目描述解题思路代码演示 回溯算法专题 leetcode90. 子集 II 来源:力扣(LeetCode) 链接:https://leetcode.cn/problems/subsets-ii 题目描述 给你一个整数数组 nums ,其中可能包含重复元素…

服务器配置远程vscode

1 使用sftp同步远程代码 打开vscode,在扩展种搜索sftp,点击安装。   按住快捷键shiftctrlp,可以打开界面顶部的命令行,输入sftp,点击如下图的config选项:   会自动在.vscode目录下创建一个名为sftp.j…

Go语言实现单链表

博主最近在学习Go语言,所以打算更新一期Go语言版本的数据结构。这篇文章将的是Go语言如何实现单链表。 文章目录 前言一、个人见解,为什么学GO?二、Go语言实现单链表1.创建节点2.通过数组创建一个单链表3.遍历单链表4.单链表插入操作4.1 伪代…

基于AutoJs7实现的薅羊毛App专业版源码大分享

源码下载链接:https://pan.baidu.com/s/1QvalXeUBE3dADfpVwzF_xg?pwd0736 提取码:0736 专业版肯定比个人版功能强大并且要稳定。增加了很多功能的同时也测试封号的App,对于封号的App,给予剔除。虽然App数量减少了但是都是稳定的…

图书推荐|Python数据分析与挖掘实战(第2版)

Python数据分析与挖掘实战(第2版)一共分为三个部分,包括基础篇(第1~5章)、实战篇(第6~12章)、提高篇(第13章)。其中基础篇介绍了数据挖掘的基本原…

linux部署rabbitmq开启mqtt插件由于监听1883端口导致重启rabbitmq失败的解决方法

linux部署rabbitmq开启mqtt插件由于监听1883端口导致重启rabbitmq失败的解决方法 第一步:部署rabbitmq 部署rabbitmq请移步(在这里可以找到erlang和rabbitmq适配的版本并下载安装包): https://blog.csdn.net/char1otte/article/de…

Flutter - 命令行工具源码调试环境搭建

文章目录 前言开发环境环境搭建运行测试调试测试最后 前言 开发Flutter项目时难免会遇到各种问题,源码调试对于问题的解决不可或缺。 对于Flutter框架项目的源码调试,如果是Flutter核心库调试,只需要创建一个Flutter项目并在项目中使用需要…

SpringCloud搭建Eureka服务注册中心(六)

前面说过eureka是c/s模式的 server服务端就是服务注册中心,其他的都是client客户端,服务端用来管理所有服务,客户端通过注册中心,来调用具体的服务; 我们先来搭建下服务端,也就是服务注册中心&#xff1b…

ansible-playbook

Ansible 的脚本 — playbook 剧本 playbooks 本身由以下各部分组成 (1)Tasks:任务,即通过 task 调用 ansible 的模板将多个操作组织在一个 playbook 中运行 (2)Variables:变量 (3&a…

attention unet + cldice 论文总结

Blood Vessel Segmentation from Low-Contrast and Wide-Field Optical Microscopic Images of Cranial Window by Attention-Gate-Based Network论文总结 论文:Blood Vessel Segmentation by Attention-Gate-Based Network 目录 一、论文背景和出发点 二、创新点…

网络端口地址转换 NAPT 配置

你是某公司的网络管理员,公司办公网需要接入互联网,公司只向 ISP 申请了一条专线,该专线分配了一个公司 IP 地址,配置实现全公司的主机都能访问外网。 技术原理 NAT 将网络划分为内部网络和外部网络两部分,局域网主机…

基于spss的多元统计分析 之 实例3(血压、胆固醇于心脏病关系的研究)(8/8)

血压、胆固醇于心脏病关系的研究 摘要 一般线性模型中的一种,即反应变量 (dependent variables)为二分类变量的回归分析,模型输出为变量取特定值的概率。 在进行二元Logistic回归分析时,通常会涉及3个步骤,分别是数据处理、卡方分…

青翼科技自研模块化互联产品 • 模拟采集FMC子卡【产品资料】

FMC122是一款基于FMC标准规范,实现2路16-bit、1GSPS ADC同步采集,2路16-bit 2.5GSPS DAC同步回放功能子卡模块。该模块遵循VITA57.1标准,可直接与FPGA载卡配合使用,板卡ADC器件采用TI的ADS54J60芯片,该芯片具有两个模拟…

同一 tomcat 不同项目 session 共享实现

说明 这里仅讨论 同一个tomcat,部署了两个工程(两个war包)。不涉及不同tomcat,不涉及集群 背景 tomcat中的工程A包含用户登录、退出、权限控制等功能;工程B包含业务功能接口。工程A将用户登录信息加密响应给前端,前…

一个例子带你了解MapReduce

写在前面:博主是一只经过实战开发历练后投身培训事业的“小山猪”,昵称取自动画片《狮子王》中的“彭彭”,总是以乐观、积极的心态对待周边的事物。本人的技术路线从Java全栈工程师一路奔向大数据开发、数据挖掘领域,如今终有小成…

RT-DETR论文解读与代码

1.概述 目前以大名鼎鼎的YOLO为代表的基于CNN的实时监测网络需要NMS进行后处理,导致不能很好的优化网络,并且网络不够健壮,从而导致检测器的推理速度出现延迟。研究者也分析了Anchor-based和Anchor-free的YOLO的性能,发现Anchor并…