赋能智慧农业生产,基于YOLOv7开发构建农业生产场景下油茶作物成熟检测识别系统

AI赋能生产生活场景,是加速人工智能技术落地的有利途径,在前文很多具体的业务场景中我们也从实验的角度来尝试性地分析实践了基于AI模型来助力生产生活制造相关的各个领域,诸如:基于AI+硬件实现农业作物除草就是一个比较熟知的场景,对于作物生产采摘场景我们则比较有所涉及,本文的主要目的就是填补这块的空白,以油茶作物采摘场景下的油茶作物成熟检测为切入点,基于目标检测模型来开发构建自动化的油茶作物成熟检测识别系统,这里是开篇,主要是基于YOLOv7来开发实现的实验性质的项目,在实际落地的时候离不开硬件端和控制端的组合,我们这里则主要是偏向软件模型的实现,首先看下实例效果:

在前文我们已经进行了相关的实践,感兴趣的话可以自行移步阅读即可:

《赋能智慧农业生产,基于YOLOv3开发构建农业生产场景下油茶作物成熟检测识别系统》

《赋能智慧农业生产,基于YOLOv8全系列【n/s/m/l/x】开发构建农业生产场景下油茶作物成熟检测识别系统》

《赋能智慧农业生产,基于YOLOv5开发构建农业生产场景下油茶作物成熟检测识别系统》

YOLOv7是 YOLO 系列最新推出的YOLO 结构,在 5 帧/秒到 160 帧/秒范围内,其速度和精度都超过了大部分已知的目标检测器,在 GPU V100 已知的 30 帧/秒以上的实时目标检测器中,YOLOv7 的准确率最高。根据代码运行环境的不同(边缘 GPU、普通 GPU 和云 GPU),YOLOv7 设置了三种基本模型,分别称为 YOLOv7-tiny、YOLOv7和 YOLOv7-W6。相比于 YOLO 系列其他网络 模 型 ,YOLOv7 的 检 测 思 路 与YOLOv4、YOLOv5相似,YOLOv7 网络主要包含了 Input(输入)、Backbone(骨干网络)、Neck(颈部)、Head(头部)这四个部分。首先,图片经过输入部分数据增强等一系列操作进行预处理后,被送入主干网,主干网部分对处理后的图片提取特征;随后,提取到的特征经过 Neck 模块特征融合处理得到大、中、小三种尺寸的特征;最终,融合后的特征被送入检测头,经过检测之后输出得到结果。
YOLOv7 网络模型的主干网部分主要由卷积、E-ELAN 模块、MPConv 模块以及SPPCSPC 模块构建而成 。在 Neck 模块,YOLOv7 与 YOLOv5 网络相同,也采用了传统的 PAFPN 结构。FPN是YoloV7的加强特征提取网络,在主干部分获得的三个有效特征层会在这一部分进行特征融合,特征融合的目的是结合不同尺度的特征信息。在FPN部分,已经获得的有效特征层被用于继续提取特征。在YoloV7里依然使用到了Panet的结构,我们不仅会对特征进行上采样实现特征融合,还会对特征再次进行下采样实现特征融合。Head检测头部分,YOLOv7 选用了表示大、中、小三种目标尺寸的 IDetect 检测头,RepConv模块在训练和推理时结构具有一定的区别。
接下来简单看下数据集情况:

这里主要是选择了yolov7-tiny这款轻量级参数量级的模型来进行开发训练,训练数据配置文件如下:

# txt path 
train: ./dataset/images/train
val: ./dataset/images/test
test: ./dataset/images/test

# number of classes
nc: 2

# class names
names: ['immature', 'mature']

模型文件如下:

# parameters
nc: 2  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple

# anchors
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# yolov7-tiny backbone
backbone:
  # [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True
  [[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 0-P1/2  
  
   [-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 1-P2/4    
   
   [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 7
   
   [-1, 1, MP, []],  # 8-P3/8
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 14
   
   [-1, 1, MP, []],  # 15-P4/16
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 21
   
   [-1, 1, MP, []],  # 22-P5/32
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 28
  ]

# yolov7-tiny head
head:
  [[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, SP, [5]],
   [-2, 1, SP, [9]],
   [-3, 1, SP, [13]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -7], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 37
  
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 47
  
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 57
   
   [-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, 47], 1, Concat, [1]],
   
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 65
   
   [-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, 37], 1, Concat, [1]],
   
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 73
      
   [57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [65, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [73, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

   [[74,75,76], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]
 

等待训练完成后看下结果详情。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【PR曲线】
精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【训练可视化】

【混淆矩阵】

【Batch实例】

感兴趣的话也都可以自行动手实践下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/309589.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【大数据进阶第三阶段之DolphinScheduler学习笔记】深度解析DolphinScheduler(海豚调度)

1、简介 Apache DolphinScheduler 是一个分布式易扩展的可视化DAG工作流任务调度开源系统。适用于企业级场景,提供了一个可视化操作任务、工作流和全生命周期数据处理过程的解决方案。 Apache DolphinScheduler 旨在解决复杂的大数据任务依赖关系,并为应…

YOLOv5改进 | 检测头篇 | DynamicHead支持检测和分割(不同于网上版本,全网首发)

一、本文介绍 本文给大家带来的改进机制是DynamicHead(Dyhead),这个检测头由微软提出的一种名为“动态头”的新型检测头,用于统一尺度感知、空间感知和任务感知。网络上关于该检测头我查了一些有一些魔改的版本,但是我觉得其已经改变了该检测头的本质,因为往往一些细节上才…

程序设计语言的基本成分

程序设计语言的基本成分 1、程序设计语言的数据成分2、程序设计语言的运算成分3、程序设计语言的控制成分4、程序设计语言的传输成分 程序设计语言的基本成分包括数据、运算、控制和传输等。 1、程序设计语言的数据成分 程序设计语言的数据成分指一种程序设计语言的数据类型。数…

最实用的 8 个免费 Android 数据恢复软件

如果您正在寻找最好的免费 Android 数据恢复软件,那就不用再犹豫了,因为我已经列出了最好的软件。不可否认,智能手机和平板电脑等 Android 设备正在与技术一起发展。与以前相比,它们也更加融入了我们的日常生活。 Android 智能手…

软件测试|Python urllib3库使用指南

简介 当涉及到进行网络请求和处理HTTP相关任务时,Python的urllib3库是一个强大且灵活的选择。它提供了一种简单的方式来执行HTTP请求、处理响应和处理连接池,使得与Web服务进行交互变得更加容易。本文将详细介绍如何使用urllib3库进行网络请求。 安装u…

Prettier、EditorConfig插件安装及配置文件讲解

安装 Prettier 我们在编写代码时,代码的格式规范非常重要,能提高代码的可读性,避免由于格式问题引起的 bug,也有利于多人协作开发时的统一风格。Prettier是一个非常好用的代码格式化工具,能自动格式化代码,…

「 网络安全术语解读 」点击劫持Clickjacking详解

引言:要想深入理解点击劫持攻击,我们需要先清楚iframe的用途及优缺点。 1. 关于iframe iframe是HTML语言中的一部分,通常用于在网页中嵌入其他网页的内容,如图像、视频、音频、链接等。它允许在一个网页中插入另一个网页&#xf…

meshlab点云平滑

文章目录 深度平滑拉普拉斯平滑Taubin 平滑其他改进的拉普拉斯平滑 Meshlab界面认识 创建几何对象 Meshlab在Filters->Smoothing, Fairing and deformation中,提供了许多滤波工具,其中与平滑滤波相关的列表如下,本节中所有用到的工具均来…

2019年认证杯SPSSPRO杯数学建模B题(第一阶段)外星语词典全过程文档及程序

2019年认证杯SPSSPRO杯数学建模 基于方差分布的方法对未知语言文本中重复片段的自动搜索问题的研究 B题 外星语词典 原题再现: 我们发现了一种未知的语言,现只知道其文字是以 20 个字母构成的。我们已经获取了许多段由该语言写成的文本,但…

C++面试宝典第18题:旋转数组

题目 给定一个数组,将数组中的元素向右移动k个位置,其中k是非负数。要求如下: (1)尽可能想出更多的解决方案,至少有三种不同的方法可以解决这个问题。 (2)使用时间复杂度为O(n)和空间复杂度为O(1)的原地算法解决这个问题。 示例 1: 输入: [1, 2, 3, 4, 5, 6, 7] 和 k…

GPT function calling v2

原文:GPT function calling v2 - 知乎 OpenAI在2023年11月10号举行了第一次开发者大会(OpenAI DevDays),其中介绍了很多新奇有趣的新功能和新应用,而且更新了一波GPT的API,在1.0版本后的API调用与之前的0.…

MySQL 从零开始:02 MySQL 安装

文章目录 1、下载 MySQL 安装程序2、安装 MySQL 要操作 MySQL ,首先要安装 MySQL ,本文将一步步展示如何安装 MySQL,简直详细到令人发指。 环境: 操作系统:Windows10 64位MySQL版本:社区版 8.0.11.0 1、下…

SpringBoot集成Skywalking实现分布式链路追踪

官方网址: Apache SkyWalking官方文档: SkyWalking 极简入门 | Apache SkyWalking下载地址:Downloads | Apache SkyWalking Agent:以探针的方式进行请求链路的数据采集,并向管理服务上报; OAP-Service&am…

L1-096:谁管谁叫爹

《咱俩谁管谁叫爹》是网上一首搞笑饶舌歌曲,来源于东北酒桌上的助兴游戏。现在我们把这个游戏的难度拔高一点,多耗一些智商。 不妨设游戏中的两个人为 A 和 B。游戏开始后,两人同时报出两个整数 NA​ 和 NB​。判断谁是爹的标准如下&#xff…

pythroch abaconda 安装 cuda 版本确定

一、简述 公司有一个深度学习的项目,由于目前没有项目。时间也有恰好可以一起学习一下 1、下载abaconda https://repo.anaconda.com/archive/ 2、安装 环境变量要✔ 其他一直下一步 3、测试 (base) C:\Users\alber>conda -V conda 23.1.0(base) C:\User…

【设计模式-02】Strategy策略模式及应用场景

一、参考资料 Java 官方文档 Overview (Java SE 18 & JDK 18)module indexhttps://docs.oracle.com/en/java/javase/18/docs/api/index.html Java中使用到的策略模式 Comparator、comparable Comparator (Java SE 18 & JDK 18)declaration: module: java.base, pa…

C++学习笔记——队列模拟

目录 一、模拟队列 二、模拟队列的知识点 三、队列 3.1入队操作 3.2出队操作 3.3访问队首元素 3.4访问队尾元素 3.5判断队列是否为空 3.6获取队列的大小 四、实现队列的基本功能 一、模拟队列 当涉及到数据存储和处理时,队列是一种常见的数据结构&#x…

最新版CleanMyMac X4.14.7智能清理mac磁盘垃圾工具

CleanMyMac X是一款专业的Mac清理软件,可智能清理mac磁盘垃圾和多余语言安装包,快速释放电脑内存,轻松管理和升级Mac上的应用。同时CleanMyMac X可以强力卸载恶意软件,修复系统漏洞,一键扫描和优化Mac系统,…

java SSM物业管理系统myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

一、源码特点 java SSM物业管理系统是一套完善的web设计系统(系统采用SSM框架进行设计开发,springspringMVCmybatis),对理解JSP java编程开发语言有帮助,系统具有完整的源代码和 数据库,系统主要采用B/…

Java 对象的内存布局

目录 一. 前言 二. Java 对象的内存布局 三. Java 对象结构 3.1. 对象头 3.1.1. Mark Word 3.1.2. 类型指针(Class Metadata Pointer) 3.1.3. 数组长度(Length) 3.2. 实例数据 3.3. 对齐填充(Padding&#xf…