分布式全局id

分布式全局id

snowflake 算法是 twitter 开源的分布式 id 生成算法,采用 Scala 语言实现,是把一个 64 位的 long 型的 id,1 个 bit 是不用的,用其中的 41 bits 作为毫秒数,用 10 bits 作为工作机器 id,12 bits 作为序列号。

  • 1 bit:不用,为啥呢?因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。
  • 41 bits:表示的是时间戳,单位是毫秒。41 bits 可以表示的数字多达 2^41 - 1 ,也就是可以标识 2^41 - 1 个毫秒值,换算成年就是表示 69 年的时间。
  • 10 bits:记录工作机器 id,代表的是这个服务最多可以部署在 2 ^ 10 台机器上,也就是 1024 台机器。但是 10 bits 里 5 个 bits 代表机房 id,5 个 bits 代表机器 id。意思就是最多代表 2^5 个机房(32 个机房),每个机房里可以代表 2^5 个机器(32 台机器)。
  • 12 bits:这个是用来记录同一个毫秒内产生的不同 id,12 bits 可以代表的最大正整数是 2^12 - 1 = 4096 ,也就是说可以用这个 12 bits 代表的数字来区分同一个毫秒内的 4096 个不同的 id。
0 | 0001100 10100010 10111110 10001001 01011100 00 | 10001 | 1 1001 | 0000 00000000

在这里插入图片描述

:::details 实现不用看,有工具实现得更好

public class IdWorker {

    private long workerId;
    private long datacenterId;
    private long sequence;

    public IdWorker(long workerId, long datacenterId, long sequence) {
        // sanity check for workerId
        // 这儿不就检查了一下,要求就是你传递进来的机房id和机器id不能超过32,不能小于0
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(
                    String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(
                    String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        System.out.printf(
                "worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
                timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);

        this.workerId = workerId;
        this.datacenterId = datacenterId;
        this.sequence = sequence;
    }

    private long twepoch = 1288834974657L;

    private long workerIdBits = 5L;
    private long datacenterIdBits = 5L;

    // 这个是二进制运算,就是 5 bit最多只能有31个数字,也就是说机器id最多只能是32以内
    private long maxWorkerId = -1L ^ (-1L << workerIdBits);

    // 这个是一个意思,就是 5 bit最多只能有31个数字,机房id最多只能是32以内
    private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    private long sequenceBits = 12L;

    private long workerIdShift = sequenceBits;
    private long datacenterIdShift = sequenceBits + workerIdBits;
    private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    private long sequenceMask = -1L ^ (-1L << sequenceBits);

    private long lastTimestamp = -1L;

    public long getWorkerId() {
        return workerId;
    }

    public long getDatacenterId() {
        return datacenterId;
    }

    public long getTimestamp() {
        return System.currentTimeMillis();
    }

    public synchronized long nextId() {
        // 这儿就是获取当前时间戳,单位是毫秒
        long timestamp = timeGen();

        if (timestamp < lastTimestamp) {
            System.err.printf("clock is moving backwards.  Rejecting requests until %d.", lastTimestamp);
            throw new RuntimeException(String.format(
                    "Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }

        if (lastTimestamp == timestamp) {
            // 这个意思是说一个毫秒内最多只能有4096个数字
            // 无论你传递多少进来,这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0;
        }

        // 这儿记录一下最近一次生成id的时间戳,单位是毫秒
        lastTimestamp = timestamp;

        // 这儿就是将时间戳左移,放到 41 bit那儿;
        // 将机房 id左移放到 5 bit那儿;
        // 将机器id左移放到5 bit那儿;将序号放最后12 bit;
        // 最后拼接起来成一个 64 bit的二进制数字,转换成 10 进制就是个 long 型
        return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift)
                | (workerId << workerIdShift) | sequence;
    }

    private long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    private long timeGen() {
        return System.currentTimeMillis();
    }

    // ---------------测试---------------
    public static void main(String[] args) {
        IdWorker worker = new IdWorker(1, 1, 1);
        for (int i = 0; i < 30; i++) {
            System.out.println(worker.nextId());
        }
    }

}

:::

思考

需要用到雪花算法一般都是大型分布式系统,而分布式意味着同一套代码的重复部署,所以上面的雪花算法还有两个最重要的问题没有解决。

  1. 分布式系统中的workerId/datacenterId 怎么确保强唯一
  2. timeStamp 怎么确保系统时钟不回拨

业界大牛的实现

  • https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md

UidGenerator是Java实现的, 基于Snowflake算法的唯一ID生成器。UidGenerator以组件形式工作在应用项目中, 支持自定义workerId位数和初始化策略, 从而适用于docker等虚拟化环境下实例自动重启、漂移等场景。 在实现上, UidGenerator通过借用未来时间来解决sequence天然存在的并发限制; 采用RingBuffer来缓存已生成的UID, 并行化UID的生产和消费, 同时对CacheLine补齐,避免了由RingBuffer带来的硬件级「伪共享」问题. 最终单机QPS可达600万。

  • https://tech.meituan.com/2017/04/21/mt-leaf.html

在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识。如在美团点评的金融、支付、餐饮、酒店、猫眼电影等产品的系统中,数据日渐增长,对数据分库分表后需要有一个唯一ID来标识一条数据或消息,数据库的自增ID显然不能满足需求;特别一点的如订单、骑手、优惠券也都需要有唯一ID做标识。此时一个能够生成全局唯一ID的系统是非常必要的。概括下来,那业务系统对ID号的要求有哪些呢?

  1. 全局唯一性:不能出现重复的ID号,既然是唯一标识,这是最基本的要求。
  2. 趋势递增:在MySQL InnoDB引擎中使用的是聚集索引,由于多数RDBMS使用B-tree的数据结构来存储索引数据,在主键的选择上面我们应该尽量使用有序的主键保证写入性能。
  3. 单调递增:保证下一个ID一定大于上一个ID,例如事务版本号、IM增量消息、排序等特殊需求。
  4. 信息安全:如果ID是连续的,恶意用户的扒取工作就非常容易做了,直接按照顺序下载指定URL即可;如果是订单号就更危险了,竞对可以直接知道我们一天的单量。所以在一些应用场景下,会需要ID无规则、不规则。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/308739.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C++进阶05】AVL树的介绍及模拟实现

一、AVL树的概念 二叉搜索树的缺点 二叉搜索树虽可以缩短查找效率 但如果数据有序或接近有序 二叉搜索树将退化为单支树 查找元素相当于在顺序表中搜索元素&#xff0c;效率低下 AVL树便是解决此问题 向二叉搜索树中插入新结点 并保证每个结点的左右子树 高度之差的绝对值不超…

【算法】不使用库函数,求解立方根

牛客原题&#xff1a;https://www.nowcoder.com/practice/caf35ae421194a1090c22fe223357dca?tpId37&tqId21330&rp1&ru/exam/oj/ta&qru/exam/oj/ta&sourceUrl%2Fexam%2Foj%2Fta%3FtpId%3D37&difficultyundefined&judgeStatusundefined&tags&a…

【LeetCode】winter vacation training

欢迎来到Cefler的博客&#x1f601; &#x1f54c;博客主页&#xff1a;那个传说中的man的主页 &#x1f3e0;个人专栏&#xff1a;题目解析 &#x1f30e;推荐文章&#xff1a;【LeetCode】winter vacation training 目录 &#x1f449;&#x1f3fb; 有效的字母异位词&#x…

websocket介绍并模拟股票数据推流

Websockt概念 Websockt是一种网络通信协议&#xff0c;允许客户端和服务器双向通信。最大的特点就是允许服务器主动推送数据给客户端&#xff0c;比如股票数据在客户端实时更新&#xff0c;就能利用websocket。 Websockt和http协议一样&#xff0c;并不是设置在linux内核中&a…

monocle2 fibroblast silicosis inmt

gc() #####安装archr包##别处复制 .libPaths(c("/home/data/t040413/R/x86_64-pc-linux-gnu-library/4.2","/home/data/t040413/R/yll/usr/local/lib/R/site-library", "/usr/local/lib/R/library","/home/data/refdir/Rlib/")).libPa…

20、Kubernetes核心技术 - 基于Prometheus和Grafana搭建集群监控平台

目录 一、概述 二、监控平台架构图​编辑 三、部署 Prometheus 3.1、Prometheus简介 3.2、部署守护进程node-exporter 3.3、部署rbac 3.4、ConfigMap 3.5、Deployment 3.6、Service 3.7、验证Prometheus 四、部署Grafana 4.1、Deployment 4.2、Service 4.3、Ing…

二叉树及其实现

二叉树 一.树的概念及结构1.1树的概念1.2相关概念 2.二叉树的概念及结构2.1 概念2.2 特殊的二叉树 3.二叉树的遍历3.1 前序、中序以及后序遍历3.2 层序遍历3.3 判断二叉树是否是完全二叉树3.4 二叉树的高度3.5 二叉树的叶子节点个数3.6 二叉树的第k层的节点个数3.7 二叉树销毁3…

吃惯人血馒头的 VC 机构,是否还能在 Fair launch 的散户牛市中胜出?

“吃惯人血馒头的 VC 机构&#xff0c;在 Fair launch 革命中正在失去话语权&#xff0c;而散户、社区完全主导加密行业的时代&#xff0c;正在悄然而至。” LaunchPad 是代币面向市场的重要一环&#xff0c;将代币推向市场&#xff0c;加密项目将能够通过代币的销售从市场上募…

RK3568驱动指南|第十篇 热插拔-第114章 内核发送事件到用户空间的方法

瑞芯微RK3568芯片是一款定位中高端的通用型SOC&#xff0c;采用22nm制程工艺&#xff0c;搭载一颗四核Cortex-A55处理器和Mali G52 2EE 图形处理器。RK3568 支持4K 解码和 1080P 编码&#xff0c;支持SATA/PCIE/USB3.0 外围接口。RK3568内置独立NPU&#xff0c;可用于轻量级人工…

java解析json复杂数据的第三种思路

文章目录 一、概述二、数据预览1. 接口json数据2. json转xml数据 三、代码实现1. pom.xml2. 核心代码3. 运行结果 四、源码传送 一、概述 接上篇 java解析json复杂数据的两种思路 我们已经通过解析返回json字符串得到数据,现在改变思路, 按照如下流程获取数据: #mermaid-svg-k…

【数据库原理】(11)SQL数据查询功能

基本格式 SELECT [ALL|DISTINCT]<目标列表达式>[,目标列表达式>]... FROM <表名或视图名>[,<表名或视图名>] ... [ WHERE <条件表达式>] [GROUP BY<列名 1>[HAVING <条件表达式>]] [ORDER BY <列名 2>[ASC DESC]];SELECT: 指定要…

springboot医院信管系统源码和论文

随着信息技术和网络技术的飞速发展&#xff0c;人类已进入全新信息化时代&#xff0c;传统管理技术已无法高效&#xff0c;便捷地管理信息。为了迎合时代需求&#xff0c;优化管理效率&#xff0c;各种各样的管理系统应运而生&#xff0c;各行各业相继进入信息管理时代&#xf…

FastDFS之快速入门、上手

知识概念 分布式文件系统 通过计算机网络将各个物理存储资源连接起来。通过分布式文件系统&#xff0c;将网络上任意资源以逻辑上的树形结构展现&#xff0c;让用户访问网络上的共享文件更见简便。 文件存储的变迁&#xff1a; 直连存储&#xff1a;直接连接与存储&#xf…

Oracle regexp_substr

select regexp_substr(123|456|789, [^|], 1, 2) from dual;

暴雨信息发布算力网络应用平台打造零感知算网服务新模式

为进一步优化算力网络应用服务能力和降低算力网络使用难度&#xff0c;暴雨信息突破基于算力网络的实例跨域协同与迁移、基于测试评估的应用度量和解构等技术&#xff0c;研发并推出算力网络应用平台。该系统通过提供一种即开即用、按需付费的零感知算网应用服务&#xff0c;使…

Python基础语法(上)——基本语法、顺序语句、判断语句、循环语句(有C++基础快速掌握Python语言)

文章目录 0.python小技巧与易错点1.python 与 c 语法有哪些区别2.Python基本语法2.1python的变量类型2.2python中的运算符2.3python中的表达式2.4python中的输入输出 3.python判断语句3.1基本用法&#xff1a;3.2关于else if 的用法3.3关于pass语句3.4python变量的作用域3.5pyt…

THB6128两相四线步进电机PWM驱动控制

THB6128两相四线步进电机驱动控制模块&#xff0c;可以驱动57及以下两相四线步进电机。该模块有以下优点&#xff1a; 芯片使用双全桥MOSFET驱动&#xff0c;低导通电阻Ron 0.55Ω最高耐压36V&#xff0c;峰值电流2.2A&#xff0c;持续电流2A&#xff0c;电流设定通过拨码开关…

大模型LLM在 Text2SQL 上的应用实践

一、前言 目前&#xff0c;大模型的一个热门应用方向Text2SQL&#xff0c;它可以帮助用户快速生成想要查询的SQL语句&#xff0c;再结合可视化技术可以降低使用数据的门槛&#xff0c;更便捷的支持决策。本文将从以下四个方面介绍LLM在Text2SQL应用上的基础实践。 Text2SQL概…

常用注解/代码解释(仅个人使用)

目录 第一章、代码解释①trim() 方法以及(Arrays.asList(str.split(reg)));②查询字典项②构建后端镜像shell命令解释 第二章、注解解释①PropertySource注解与Configurationproperties注解的区别 第三章、小知识①Linux系统中使用$符号表示变量 友情提醒: 先看文章目录&#…

Android学习(四):常用布局

Android学习&#xff08;四&#xff09;&#xff1a;常用布局 五种常用布局 线性布局&#xff1a;以水平或垂直方向排列相对布局&#xff1a;通过相对定位排列帧布局&#xff1a;开辟空白区域&#xff0c;帧里的控件(层)叠加表格布局&#xff1a;表格形式排列绝对布局&#x…