ChatGPT4+Python近红外光谱数据分析及机器学习与深度学习建模进阶应用

2022年11月30日,可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出了聊天机器人ChatGPT3.5,将人工智能的发展推向了一个新的高度。2023年4月,更强版本的ChatGPT4.0上线,文本、语音、图像等多模态交互方式使其在各行各业的应用呈现了更多的可能性。2023年11月7日,OpenAI首届开发者大会被称为“科技界的春晚”,吸引了全球广大用户的关注,GPT商店更是显现了OpenAI旨在构建AI生态的野心。因此,

为了帮助近红外光谱分析领域的广大科研人员更加熟练地掌握ChatGPT4.0在近红外光谱数据分析、定性/定量分析模型代码自动生成等方面的强大功能,同时更加系统地学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,本次教程,旨在帮助学员掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、自编码器、U-Net等)的基本原理及Python、Pytorch代码实现方法。

本次教程采用“理论讲解+案例实战+动手实操+讨论互动”相结合的方式,抽丝剥茧、深入浅出讲解ChatGPT4.0的最新功能,以及经典人工智能方法在近红外光谱数据分析与定性/定量建模时需要掌握的经验及技巧。

第一章 ChatGPT4入门基础

1、ChatGPT概述(GPT-1、GPT-2、GPT-3、GPT-3.5、GPT-4模型的演变)

2、ChatGPT对话初体验(注册与充值、购买方法)

3、GPT-4与GPT-3.5的区别,以及与国内大语言模型(文心一言、星火等)的区别

4、ChatGPT科研必备插件(Data Interpreter、Wolfram、WebPilot、MixerBox Scholar、ScholarAI、Show Me、AskYourPDF等)

5、定制自己的专属GPTs(制作专属GPTs的两种方式:聊天/配置参数、利用Knowledge上传本地知识库提升专属GPTs性能、利用Actions通过API获取外界信息、专属GPTs的分享)

6、GPT Store简介

7、案例演示与实操练习

第二章 ChatGPT4 提示词使用方法与技巧

1、ChatGPT Prompt (提示词)使用技巧(为ChatGPT设定身份、明确任务内容、提供任务相关的背景、举一个参考范例、指定返回的答案格式等)

2、常用的ChatGPT提示词模板

3、基于模板的ChatGPT提示词优化

4、利用ChatGPT4 及插件优化提示词

5、通过promptperfect.jina.ai优化提示词

6、利用ChatGPT4 及插件生成提示词

7、ChatGPT4突破Token限制实现接收或输出万字长文(什么是Token?Token数与字符数之间的互相换算、五种方法提交超过Token限制的文本、四种方法让ChatGPT的输出突破Token限制)

8、控制ChatGPT的输出长度(使用修饰语、限定回答的范围、通过上下文限定、限定数量等)

9、利用ChatGPT4 及插件保存喜欢的ChatGPT提示词并一键调用

10、案例演示:利用ChatGPT4实现网页版游戏的设计、代码自动生成与运行

11、实操练习

第三章 ChatGPT4助力信息检索与总结分析

1、传统信息检索方法与技巧总结(Google Scholar、ResearchGate、Sci-Hub、GitHub、关键词检索+同行检索、文献订阅)

2、利用ChatGPT4 及插件实现联网检索文献

3、利用ChatGPT4及插件总结分析文献内容(三句话摘要、子弹式要点摘要、QA摘要、表格摘要、关键词与关键句提取、页面定位、多文档对比、情感分析)

4、利用ChatGPT4 及插件总结Youtube视频内容

5、案例演示与实操练习

第四章 ChatGPT4助力论文写作与投稿

1、利用ChatGPT4自动生成论文的总体框架

2、利用ChatGPT4完成论文翻译(指定翻译角色和翻译的领域、给一些背景提示)

3、利用ChatGPT4实现论文语法校正

4、利用ChatGPT4完成段落结构及句子逻辑润色

5、利用ChatGPT4完成论文评审意见的撰写与回复

6、案例演示与实操练习

第五章 ChatGPT4助力Python入门基础

1、Python环境搭建( 下载、安装与版本选择)。

2、如何选择Python编辑器?(IDLE、Notepad++、PyCharm、Jupyter…)

3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调用等)

4、第三方模块的安装与使用

5、Numpy模块库(Numpy的安装;ndarray类型属性与数组的创建;数组索引与切片;Numpy常用函数简介与使用)

6、Matplotlib基本图形绘制(线形图、柱状图、饼图、气泡图、直方图、箱线图、散点图等)、图形的布局(多个子图绘制、规则与不规则布局绘制、向画布中任意位置添加坐标轴)

7、实操练习

第六章 ChatGPT4助力近红外光谱数据预处理

1、近红外光谱数据标准化与归一化(为什么需要标准化与归一化?)

2、近红外光谱数据异常值、缺失值处理

3、近红外光谱数据离散化及编码处理

4、近红外光谱数据一阶导数与二阶导数

5、近红外光谱数据去噪与基线校正

6、近红外光谱数据预处理中的ChatGPT提示词模板讲解

7、实操练习

第七章 ChatGPT4助力多元线性回归近红外光谱分析

1、多元线性回归模型(工作原理、最小二乘法)

2、岭回归模型(工作原理、岭参数k的选择、用岭回归选择变量)

3、LASSO模型(工作原理、特征选择、建模预测、超参数调节)

4、Elastic Net模型(工作原理、建模预测、超参数调节)

5、多元线性回归、岭回归、LASSO、Elastic Net的Python代码实现

6、多元线性回归中的ChatGPT提示词模板讲解

7、案例演示:近红外光谱回归拟合建模

第八章 ChatGPT4助力BP神经网络近红外光谱分析

1、BP神经网络的基本原理(人工智能发展过程经历了哪些曲折?人工神经网络的分类有哪些?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?)

2、训练集和测试集划分? BP神经网络常用激活函数有哪些?如何查看模型参数?

3、BP神经网络参数(隐含层神经元个数、学习率)的优化(交叉验证)

4、值得研究的若干问题(欠拟合与过拟合、评价指标的设计、样本不平衡问题等)

5、BP神经网络的Python代码实现

6、BP神经网络中的ChatGPT提示词模板讲解

7、案例演示: 1)近红外光谱回归拟合建模;2)近红外光谱分类识别建模

第九章 ChatGPT4助力支持向量机(SVM)近红外光谱分析

1、SVM的基本原理(什么是经验误差最小和结构误差最小?SVM的本质是解决什么问题?SVM的四种典型结构是什么?核函数的作用是什么?什么是支持向量?)

2、SVM扩展知识(如何解决多分类问题? SVM的启发:样本重要性排序及样本筛选)

3、SVM的Python代码实现

4、SVM中的ChatGPT提示词模板讲解

5、案例演示:近红外光谱分类识别建模

第十章 ChatGPT4助力决策树、随机森林、Adaboost、XGBoost和LightGBM近红外光谱分析

1、决策树的基本原理(什么是信息熵和信息增益?ID3和C4.5算法的区别与联系)

2、随机森林的基本原理与集成学习框架(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”提现在哪些地方?随机森林的本质是什么?)

4、Bagging与Boosting集成策略的区别

5、Adaboost算法的基本原理

6、Gradient Boosting Decision Tree (GBDT)模型的基本原理

7、XGBoost与LightGBM简介

8、决策树、随机森林、Adaboost、XGBoost与LightGBM的Python代码实现

9、决策树、随机森林、Adaboost、XGBoost与LightGBM的ChatGPT提示词模板讲解

10、案例演示:近红外光谱回归拟合建模

第十一章 ChatGPT4助力遗传算法近红外光谱分析

1、群优化算法概述

2、遗传算法(Genetic Algorithm)的基本原理(什么是个体和种群?什么是适应度函数?选择、交叉与变异算子的原理与启发式策略)

3、遗传算法的Python代码实现

4、遗传算法中的ChatGPT提示词模板讲解

5、案例演示:基于二进制遗传算法的近红外光谱波长筛选

第十二章 ChatGPT4助力近红外光谱变量降维与特征选择

1、主成分分析(PCA)的基本原理

2、偏最小二乘(PLS)的基本原理(PCA与PLS的区别与联系;PCA除了降维之外,还可以帮助我们做什么?)

3、近红外光谱波长选择算法的基本原理(Filter和Wrapper;前向与后向选择法;区间法;无信息变量消除法等)

4、PCA、PLS、特征选择算法的Python代码实现

5、PCA、PLS、特征选择算法中的ChatGPT提示词模板讲解

6、案例演示:
1)基于L1正则化的近红外光谱波长筛选

2)基于信息熵的近红外光谱波长筛选

3)基于Recursive feature elimination的近红外光谱波长筛选

4)基于Forward-SFS的近红外光谱波长筛选

第十三章 ChatGPT4助力Pytorch入门基础

1、深度学习框架概述(PyTorch、Tensorflow、Keras等)

2、PyTorch简介(动态计算图与静态计算图机制、PyTorch的优点)

3、PyTorch的安装与环境配置(Pip vs. Conda包管理方式、验证是否安装成功)

4、张量(Tensor)的定义,以及与标量、向量、矩阵的区别与联系)

5、张量(Tensor)的常用属性与方法(dtype、device、requires_grad、cuda等)

6、张量(Tensor)的创建(直接创建、从numpy创建、依据概率分布创建)

7、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)

8、张量(Tensor)的索引与切片

9、PyTorch的自动求导(Autograd)机制与计算图的理解

10、PyTorch常用工具包及API简介(torchvision(transforms、datasets、model)、torch.nn、torch.optim、torch.utils(Dataset、DataLoader))

第十四章 ChatGPT4助力卷积神经网络近红外光谱分析

1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?深度学习与传统机器学习的本质区别是什么?)

2、卷积神经网络的基本原理(什么是卷积核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?CNN提取的特征是怎样的?)

3、卷积神经网络参数调试技巧(卷积核尺寸、卷积核个数、移动步长、补零操作、池化核尺寸等参数与特征图的维度,以及模型参数量之间的关系是怎样的?)

4、卷积神经网络的进化史:LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系

5、利用PyTorch构建卷积神经网络(Convolution层、Batch Normalization层、Pooling层、Dropout层、Flatten层等)

6、卷积神经网络中的ChatGPT提示词模板讲解

7、案例演示:(1)CNN预训练模型实现物体识别;(2)利用卷积神经网络抽取抽象特征;(3)自定义卷积神经网络拓扑结构;(4)基于卷积神经网络的近红外光谱模型建立

第十五章 ChatGPT4助力近红外光谱迁移学习

1、迁移学习算法的基本原理(为什么需要迁移学习?为什么可以迁移学习?迁移学习的基本思想是什么?)

2、常用的迁移学习算法简介(基于实例、特征和模型,譬如:TrAdaboost算法)

3、基于卷积神经网络的迁移学习算法

4、迁移学习的Python代码实现

5、案例演示:基于迁移学习的近红外光谱的模型传递(模型移植)

第十六章 ChatGPT4助力自编码器近红外光谱分析

1、自编码器(Auto-Encoder的工作原理)

2、常见的自编码器类型简介(降噪自编码器、深度自编码器、掩码自编码器等)

3、自编码器的Python代码实现

4、自编码器中的ChatGPT提示词模板讲解

5、案例演示:1)基于自编码器的近红外光谱数据预处理

             2)基于自编码器的近红外光谱数据降维与有效特征提取

第十七章 ChatGPT4助力U-Net多光谱图像语义分割

1、语义分割(Semantic Segmentation)简介

2、U-Net模型的基本原理

3、语义分割、U-Net模型中的ChatGPT提示词模板讲解

4、案例演示:基于U-Net的多光谱图像语义分割

第十八章 ChatGPT4助力深度学习模型可解释性与可视化方法

1、什么是模型可解释性?为什么需要对深度学习模型进行解释?

2、常用的可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?

3、类激活映射CAM(Class Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIME(Local Interpretable Model-agnostic Explanation)等原理讲解

4、t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征

5、深度学习模型可解释性与可视化中的ChatGPT提示词模板讲解

6、案例演示

第十九章 复习与答疑讨论

1、课程复习与总结、资料分享(图书、在线课程资源、源代码等)

2、科研与创新方法总结(如何利用Google Scholar、Sci-Hub、ResearchGate等工具查阅文献资料、配套的数据和代码?如何更好地撰写论文的Discussion部分?)

3、答疑与讨论(大家提前把问题整理好)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/308433.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vue知识-03

购物车案例 要实现的功能&#xff1a; 1、计算商品总价格 2、全选框和取消全选框 3、商品数量的增加和减少 <body> <div id"app"><div class"row"><div class"col-md-6 col-md-offset-3"><h1 class"text-center…

SpringCloudAlibaba微服务架构实战派上下册技术交流!

另外我的新书RocketMQ消息中间件实战派上下册&#xff0c;在京东已经上架啦&#xff0c;目前都是5折&#xff0c;非常的实惠。 https://item.jd.com/14337086.html​编辑https://item.jd.com/14337086.html “RocketMQ消息中间件实战派上下册”是我既“Spring Cloud Alibaba微…

Springboot药物不良反应智能监测系统源码

一、系统简介 ADR指的是药品不良反应&#xff0c;即在合格药品在正常用法用量下&#xff0c;出现与用药目的无关或意外的有害反应。ADR数据辨别引擎、药品ADR信号主动监测引擎、ADR处置行为分析引擎。ADR数据辨别引擎&#xff0c;通过主动监测患者具象临床指标&#xff0c;比如…

Simpy简介:python仿真模拟库-03/5

一、说明 在过去的两篇文章中&#xff0c;我们了解了 simpy 的基础知识、声明变量和处理表达式。值得注意的例子包括评估导数和积分。现在&#xff0c;让我们继续使用函数。 二、SymPy — 函数类 SymPy 包包含 sympy.core.function 模块中的 Function 类。该类作为各种数学函数…

腾讯云优惠券介绍、领取方法及使用教程

腾讯云作为国内领先的云服务提供商&#xff0c;为了吸引更多的用户使用其产品&#xff0c;经常会推出各种优惠券活动。本文将详细介绍腾讯云的优惠券、领取方法和使用教程。 一、腾讯云优惠券介绍 腾讯云优惠券是腾讯云为了吸引用户使用其产品而推出的促销活动。用户可以通过领…

软件测试工程师,从6K到25k的测试之路养成,一路狂飙...

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 1、技术方向 就技…

静态网页设计——滑板官网(HTML+CSS+JavaScript)(dw、sublime Text、webstorm、HBuilder X)

前言 声明&#xff1a;该文章只是做技术分享&#xff0c;若侵权请联系我删除。&#xff01;&#xff01; 感谢大佬的视频&#xff1a;https://www.bilibili.com/video/BV1Cw411u7hj/?vd_source5f425e0074a7f92921f53ab87712357b 源码&#xff1a;https://space.bilibili.com…

基于传统机器学习的项目开发过程——@挑大梁

1 场景分析 1.1 项目背景 描述开发项目模型的一系列情境和因素&#xff0c;包括问题、需求、机会、市场环境、竞争情况等 1.2. 解决问题 传统机器学习在解决实际问题中主要分为两类&#xff1a; 有监督学习&#xff1a;已知输入、输出之间的关系而进行的学习&#xff0c;从而…

statsmodels.tsa 笔记 detrend(去趋势)

1 基本使用方法 statsmodels.tsa.tsatools.detrend(x, order1, axis0) 2 参数说明 x数据。如果是二维数组&#xff0c;那么每一行或每一列将独立地去除趋势&#xff0c;但趋势的阶数是一样的。order趋势的多项式阶数。0 表示常数趋势&#xff08;即没有趋势&#xff09;&…

炫技作品!极好!独家原创!一种新型改进的蜣螂优化算法(CCCDBO)

炫技作品&#xff01;&#xff0c;独家原创&#xff01; 蜣螂优化算法DBO的含金量不用我多介绍了吧&#xff0c;这是和麻雀优化算法SSA同一个课题组出的算法&#xff0c;业内公认的比较好的算法&#xff0c;这个算法认可度很高&#xff01; 一种新型改进蜣螂优化算法&#xf…

无法访问Bing网站 - 解决方案

问题 Bing官方网址&#xff1a;https://www.bing.com/ 电脑无法访问Bing网站&#xff0c;但手机等移动设备可以访问Bing网站&#xff0c;此时可尝试以下方案。 以下方案适用于各种系统&#xff0c;如Win/Linux系统。 解决方案 方案1 修改Bing网址为&#xff1a;https://www4…

RocketMq直接上手(火箭班)

Apache RocketMQ官方文档&#xff1a;https://rocketmq.apache.org/zh/docs/bestPractice/06FAQ/&#xff0c;这里面涵盖了所有的基本知识、各种搭建环境、基础代码测试…还有各种问题总结&#xff0c;很值得自主学习。 1.配置依赖&#xff1a;pom.xml文件 可以只截取maven仓库…

跟随鼠标3D倾斜

创建一个vanilla-tilt.js文件将一下代码黏贴进去 export var VanillaTilt (function () {use strict;/*** Created by Sergiu Șandor (micku7zu) on 1/27/2017.* Original idea: https://github.com/gijsroge/tilt.js* MIT License.* Version 1.7.2*/class VanillaTilt {cons…

一道新能:周期底部,TOPCon“红利牛”IPO来了

2023年无疑是TOPCon技术路线正式登台的一年&#xff0c;而风口之下必有“黑马”的诞生&#xff0c;去年最后一个工作日递交招股书申请创业板上市的一道新能正是如此。 复盘发现&#xff0c;短短成立五年&#xff0c;一道新能在双碳红利期中&#xff0c;实现资产规模、营收规模…

OpenAI ChatGPT-4开发笔记2024-04:Chat之Tool之2:multiple functions

从程序员到ai Expert 1 定义参数和函数2 第一轮chatgpt3 第一轮结果和function定义全部加入prompt再喂给chatgpt4 大结局7 参考资料 上一篇解决了调用一个函数的问题。这一篇扩展为调用3个。n个自行脑补。 1 定义参数和函数 #1.设定目标 import json import openai#1.定义para…

CSS 弹幕按钮动画

<template><view class="content"><button class="btn-23"><text class="text">弹幕按钮</text><text class="marquee">弹幕按钮</text></button></view></template><…

IP地址定位技术筑牢网络安全防线

随着互联网技术的飞速发展&#xff0c;网络安全问题日益凸显&#xff0c;成为人们关注的焦点。如何有效防范和打击网络犯罪&#xff0c;维护国家安全和社会稳定&#xff0c;是摆在我们面前的一项紧迫任务。IP地址定位技术作为网络安全领域的一项重要技术&#xff0c;在防范和打…

阿里云 云数据库 Redis 版测评

1. 试用 地址&#xff1a;https://developer.aliyun.com/topic/freetier/database 点击试用 选择相应信息后点击立即试用&#xff0c;此处务必注意ECS和Redis需要在一个地域(可用区)&#xff0c;否则后续连接不方便。 2. 创建实例 购买后&#xff0c;进入控制台&#xff0c…

Pytorch从零开始实战16

Pytorch从零开始实战——ResNeXt-50算法的思考 本系列来源于365天深度学习训练营 原作者K同学 对于上次ResNeXt-50算法&#xff0c;我们同样有基于TensorFlow的实现。具体代码如下。 引入头文件 import numpy as np from tensorflow.keras.preprocessing.image import Ima…

字体图标操作步骤

网站 直接点击 进去后长这样&#xff0c;点免费的添加 保存下载 保存后解压 把fonts文件夹复制粘贴到我们自己项目 可以放在同images的路径下 引入 来源于 再style中粘贴 font-face {font-family: icomoon;src: url(fonts/icomoon.eot?jyg4cp);src: url(fonts/icomoo…