C++11教程:C++11新特性大汇总(第六部分)

C++11是2011年发布的C++标准,是C++的一次重大升级。

第十二部分:C++多文件编程

十一、C++11列表初始化(统一了初始化方式)

我们知道,在 C++98/03 中的对象初始化方法有很多种,请看下面的代码:

//初始化列表
int i_arr[3] = { 1, 2, 3 };  //普通数组
struct A
{
    int x;
    struct B
    {
        int i;
        int j;
    } b;
} a = { 1, { 2, 3 } };  //POD类型

//拷贝初始化(copy-initialization)
int i = 0;
class Foo
{
    public:
    Foo(int) {}
} foo = 123;  //需要拷贝构造函数

//直接初始化(direct-initialization)
int j(0);
Foo bar(123);

这些不同的初始化方法,都有各自的适用范围和作用。最关键的是,这些种类繁多的初始化方法,没有一种可以通用所有情况。

为了统一初始化方式,并且让初始化行为具有确定的效果,C++11 中提出了列表初始化(List-initialization)的概念。

POD 类型即 plain old data 类型,简单来说,是可以直接使用 memcpy 复制的对象。

1、统一的初始化

在上面我们已经看到了,对于普通数组和 POD 类型,C++98/03 可以使用初始化列表(initializer list)进行初始化:

int i_arr[3] = { 1, 2, 3 };

long l_arr[] = { 1, 3, 2, 4 };

struct A

{

        int x;

        int y;

} a = { 1, 2 };

但是这种初始化方式的适用性非常狭窄,只有上面提到的这两种数据类型可以使用初始化列表。

在 C++11 中,初始化列表的适用性被大大增加了。它现在可以用于任何类型对象的初始化,请看下面的代码。

【实例】通过初始化列表初始化对象。

class Foo
{
public:
    Foo(int) {}
private:
    Foo(const Foo &);
};

int main(void)
{
    Foo a1(123);
    Foo a2 = 123;  //error: 'Foo::Foo(const Foo &)' is private
    Foo a3 = { 123 };
    Foo a4 { 123 };
    int a5 = { 3 };
    int a6 { 3 };
    return 0;
}

在上例中,a3、a4 使用了新的初始化方式来初始化对象,效果如同 a1 的直接初始化。

a5、a6 则是基本数据类型的列表初始化方式。可以看到,它们的形式都是统一的。

这里需要注意的是,a3 虽然使用了等于号,但它仍然是列表初始化,因此,私有的拷贝构造并不会影响到它。

a4 和 a6 的写法,是 C++98/03 所不具备的。在 C++11 中,可以直接在变量名后面跟上初始化列表,来进行对象的初始化。

这种变量名后面跟上初始化列表方法同样适用于普通数组和 POD 类型的初始化:

int i_arr[3] { 1, 2, 3 };  //普通数组
struct A
{
    int x;
    struct B
    {
        int i;
        int j;
    } b;
} a { 1, { 2, 3 } };  //POD类型

在初始化时,{}前面的等于号是否书写对初始化行为没有影响。

另外,如同读者所想的那样,new 操作符等可以用圆括号进行初始化的地方,也可以使用初始化列表:

int* a = new int { 123 };
double b = double { 12.12 };
int* arr = new int[3] { 1, 2, 3 };

指针 a 指向了一个 new 操作符返回的内存,通过初始化列表方式在内存初始化时指定了值为 123。

b 则是对匿名对象使用列表初始化后,再进行拷贝初始化。

这里让人眼前一亮的是 arr 的初始化方式。堆上动态分配的数组终于也可以使用初始化列表进行初始化了。

除了上面所述的内容之外,列表初始化还可以直接使用在函数的返回值上:

struct Foo

 {

        Foo(int, double) {}

};

Foo func(void)

{

         return { 123, 321.0 };

}

这里的 return 语句就如同返回了一个 Foo(123, 321.0)。

由上面的这些例子可以看到,在 C++11 中使用初始化列表是非常便利的。它不仅统一了各种对象的初始化方式,而且还使代码的书写更加简单清晰。


十二、C++11 lambda匿名函数用法详解

lambda 源自希腊字母表中第 11 位的 λ,在计算机科学领域,它则是被用来表示一种匿名函数。所谓匿名函数,简单地理解就是没有名称的函数,又常被称为 lambda 函数或者 lambda 表达式。

继 Python、Java、C#、PHP 等众多高级编程语言都支持 lambda 匿名函数后,C++11 标准终于引入了 lambda,本节将带领大家系统地学习 lambda 表达式的具体用法。

1、lambda匿名函数的定义

定义一个 lambda 匿名函数很简单,可以套用如下的语法格式:

[外部变量访问方式说明符] (参数) mutable noexcept/throw() -> 返回值类型
{
   函数体;
};

其中各部分的含义分别为:

1) [外部变量方位方式说明符]

[ ] 方括号用于向编译器表明当前是一个 lambda 表达式,其不能被省略。在方括号内部,可以注明当前 lambda 函数的函数体中可以使用哪些“外部变量”。

所谓外部变量,指的是和当前 lambda 表达式位于同一作用域内的所有局部变量。

2) (参数)

和普通函数的定义一样,lambda 匿名函数也可以接收外部传递的多个参数。和普通函数不同的是,如果不需要传递参数,可以连同 () 小括号一起省略;

3) mutable

此关键字可以省略,如果使用则之前的 () 小括号将不能省略(参数个数可以为 0)。默认情况下,对于以值传递方式引入的外部变量,不允许在 lambda 表达式内部修改它们的值(可以理解为这部分变量都是 const 常量)。而如果想修改它们,就必须使用 mutable 关键字。

注意,对于以值传递方式引入的外部变量,lambda 表达式修改的是拷贝的那一份,并不会修改真正的外部变量;

4) noexcept/throw()

可以省略,如果使用,在之前的 () 小括号将不能省略(参数个数可以为 0)。默认情况下,lambda 函数的函数体中可以抛出任何类型的异常。而标注 noexcept 关键字,则表示函数体内不会抛出任何异常;使用 throw() 可以指定 lambda 函数内部可以抛出的异常类型。

值得一提的是,如果 lambda 函数标有 noexcept 而函数体内抛出了异常,又或者使用 throw() 限定了异常类型而函数体内抛出了非指定类型的异常,这些异常无法使用 try-catch 捕获,会导致程序执行失败(本节后续会给出实例)。

5) -> 返回值类型

指明 lambda 匿名函数的返回值类型。值得一提的是,如果 lambda 函数体内只有一个 return 语句,或者该函数返回 void,则编译器可以自行推断出返回值类型,此情况下可以直接省略-> 返回值类型

6) 函数体

和普通函数一样,lambda 匿名函数包含的内部代码都放置在函数体中。该函数体内除了可以使用指定传递进来的参数之外,还可以使用指定的外部变量以及全局范围内的所有全局变量。

需要注意的是,外部变量会受到以值传递还是以引用传递方式引入的影响,而全局变量则不会。换句话说,在 lambda 表达式内可以使用任意一个全局变量,必要时还可以直接修改它们的值。

其中,红色标识的参数是定义 lambda 表达式时必须写的,而绿色标识的参数可以省略。

比如,如下就定义了一个最简单的 lambda 匿名函数:

[]{}

显然,此 lambda 匿名函数未引入任何外部变量([] 内为空),也没有传递任何参数,没有指定 mutable、noexcept 等关键字,没有返回值和函数体。所以,这是一个没有任何功能的 lambda 匿名函数。

(1)lambda匿名函数中的[外部变量]

对于 lambda 匿名函数的使用,令多数初学者感到困惑的就是 [外部变量] 的使用。其实很简单,无非表 1 所示的这几种编写格式。

表 1 [外部变量]的定义方式

外部变量格式功能
[]空方括号表示当前 lambda 匿名函数中不导入任何外部变量。
[=]只有一个 = 等号,表示以值传递的方式导入所有外部变量;
[&]只有一个 & 符号,表示以引用传递的方式导入所有外部变量;
[val1,val2,...]表示以值传递的方式导入 val1、val2 等指定的外部变量,同时多个变量之间没有先后次序;
[&val1,&val2,...]表示以引用传递的方式导入 val1、val2等指定的外部变量,多个变量之间没有前后次序;
[val,&val2,...]以上 2 种方式还可以混合使用,变量之间没有前后次序。
[=,&val1,...]表示除 val1 以引用传递的方式导入外,其它外部变量都以值传递的方式导入。
[this]表示以值传递的方式导入当前的 this 指针。

 注意,单个外部变量不允许以相同的传递方式导入多次。例如 [=,val1] 中,val1 先后被以值传递的方式导入了 2 次,这是非法的。

【例 1】lambda 匿名函数的定义和使用。

#include <iostream>

#include <algorithm>

using namespace std;

int main()

{

        int num[4] = {4, 2, 3, 1};

        //对 a 数组中的元素进行排序

        sort(num, num+4, [=](int x, int y) -> bool{ return x < y; } );

        for(int n : num){

                cout << n << " ";

        }

        return 0;

}

程序执行结果为:

1 2 3 4

程序第 9 行通过调用 sort() 函数实现了对 num 数组中元素的升序排序,其中就用到了 lambda 匿名函数。而如果使用普通函数,需以如下代码实现:

#include <iostream>
#include <algorithm>
using namespace std;
//自定义的升序排序规则
bool sort_up(int x,int y){
return  x < y;
}

int main()
{
    int num[4] = {4, 2, 3, 1};
    //对 a 数组中的元素进行排序
    sort(num, num+4, sort_up);
    for(int n : num){
        cout << n << " ";
    }
    return 0;
}

此程序中 sort_up() 函数的功能和上一个程序中的 lambda 匿名函数完全相同。显然在类似的场景中,使用 lambda 匿名函数更有优势。

除此之外,虽然 lambda 匿名函数没有函数名称,但我们仍可以为其手动设置一个名称,比如:

#include <iostream>
using namespace std;

int main()
{
    //display 即为 lambda 匿名函数的函数名
    auto display = [](int a,int b) -> void{cout << a << " " << b;};
    //调用 lambda 函数
    display(10,20);
    return 0;
}

程序执行结果为:

10 20

可以看到,程序中使用 auto 关键字为 lambda 匿名函数设定了一个函数名,由此我们即可在作用域内调用该函数。

【例 2】值传递和引用传递的区别

#include <iostream>
using namespace std;
//全局变量
int all_num = 0;
int main()
{
    //局部变量
    int num_1 = 1;
    int num_2 = 2;
    int num_3 = 3;
    cout << "lambda1:\n";
    auto lambda1 = [=]{
        //全局变量可以访问甚至修改
        all_num = 10;
        //函数体内只能使用外部变量,而无法对它们进行修改
        cout << num_1 << " "
             << num_2 << " "
             << num_3 << endl;
    };
    lambda1();
    cout << all_num <<endl;

    cout << "lambda2:\n";
    auto lambda2 = [&]{
        all_num = 100;
        num_1 = 10;
        num_2 = 20;
        num_3 = 30;
        cout << num_1 << " "
             << num_2 << " "
             << num_3 << endl;
    };
    lambda2();
    cout << all_num << endl;
    return 0;
}

程序执行结果为:

lambda1:
1 2 3
10
lambda2:
10 20 30
100

可以看到,在创建 lambda1 和 lambda2 匿名函数的作用域中,有 num_1、num_2 和 num_3 这 3 个局部变量,另外还有 all_num 全局变量。

其中,lambda1 匿名函数是以 [=] 值传递的方式导入的局部变量,这意味着默认情况下,此函数内部无法修改这 3 个局部变量的值,但全局变量 all_num 除外。相对地,lambda2 匿名函数以 [&] 引用传递的方式导入这 3 个局部变量,因此在该函数的内部不就可以访问这 3 个局部变量,还可以任意修改它们。同样,也可以访问甚至修改全局变量。

感兴趣的读者,可自行尝试在 lambda1 匿名函数中修改 num_1、num_2 或者 num_3 的值,观察编译器的报错信息。

当然,如果我们想在 lambda1 匿名函数的基础上修改外部变量的值,可以借助 mutable 关键字,例如:

auto lambda1 = [=]() mutable{
    num_1 = 10;
    num_2 = 20;
    num_3 = 30;
    //函数体内只能使用外部变量,而无法对它们进行修改
    cout << num_1 << " "
         << num_2 << " "
         << num_3 << endl;
};

由此,就可以在 lambda1 匿名函数中修改外部变量的值。但需要注意的是,这里修改的仅是 num_1、num_2、num_3 拷贝的那一份的值,真正外部变量的值并不会发生改变。

【例 3】执行抛出异常类型

#include <iostream>
using namespace std;
int main()
{
    auto except = []()throw(int) {
        throw 10;
    };
    try {
        except();
    }
    catch (int) {
        cout << "捕获到了整形异常";
    }
    return 0;
}

程序执行结果为:

捕获到了整形异常

可以看到,except 匿名数组中指定函数体中可以抛出整形异常,因此当函数体中真正发生整形异常时,可以借助 try-catch 块成功捕获并处理。

在此基础上,在看一下反例:

#include <iostream>
using namespace std;
int main()
{
    auto except1 = []()noexcept{
        throw 100;
    };

    auto except2 = []()throw(char){
        throw 10;
    };
    try{
        except1();
        except2();
    }catch(int){
        cout << "捕获到了整形异常"<< endl;
    }

    return 0;
}

此程序运行会直接崩溃,原因很简单,except1 匿名函数指定了函数体中不发生任何异常,但函数体中却发生了整形异常;except2 匿名函数指定函数体可能会发生字符异常,但函数体中却发生了整形异常。由于指定异常类型和真正发生的异常类型不匹配,导致 try-catch 无法捕获,最终程序运行崩溃。

如果不使用 noexcept 或者 throw(),则 lambda 匿名函数的函数体中允许发生任何类型的异常。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/308038.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C#编程-实现在文本文件中的读和写

实现在文本文件中的读和写 Stream类用于从文本文件读取数据和向文本文件写入数据。它是一个抽象类,支持向流读写字节。如果文件的数据仅是文本,那么您可以使用StreamReader类和StreamWriter类来完成相应的读和写任务。 StreamReader类 StreamReader类继承自从抽象类TextRea…

大家都在问的牛仔外套来啦

经典永不过时的牛仔外套&#xff0c; 绝对是衣橱里必不可少的时尚单品之一 重工水洗破洞乞丐风&#xff0c;个性潮流感十足 时尚帅气&#xff0c;男宝女宝都能穿还有妈妈款哦 经典宽松版型&#xff0c;不挑身材不挑人穿对身材包容性很强 怎么穿都好看&#xff0c;简单搭配…

手轮脉冲平滑处理笔记

这是一个求手脉倍率((Hw_Control.mult_ratio)与手脉脉冲计数延迟次数即累计过去n次的平均值(Hw_Control.lag_num)之间关系算法的计算过程笔记文档 1、已知 mult_ratio=1时 lag_num=10; mult_ratio=10时 lag_num=20; .mult_ratio==100时 lag_num=30; 以此类推 2、设lag_num…

如何实现两台Linux虚拟机ssh免密登录

实验开始前 1.准备好两台虚拟机&#xff08;下载好镜像文件的&#xff09; 2.实验步骤 公钥验证&#xff1a;&#xff08;免密登陆验证方式&#xff09; &#xff08;1&#xff09;生成非对称秘钥 [rootclient ~]# ssh-keygen -t rsa Generating public/private rsa key pai…

无线与局域网技术期末划题自制答案

简答题 1.描述5G的三大应用场景&#xff1f; 5G的三大应用场景包括增强型移动宽带&#xff08;eMBB&#xff09;、超可靠低延迟通信&#xff08;URLLC&#xff09;和大规模机器类型通信&#xff08;mMTC&#xff09;。增强型移动宽带&#xff08;eMBB&#xff09;主要用于支持…

数字化转型究竟是什么意思?

在这个飞速发展的数字时代&#xff0c;数字化转型已成为各个行业不可回避的趋势。从企业到组织&#xff0c;都在努力借助先进的数字技术&#xff0c;以迎合时代潮流&#xff0c;提升效率、创造价值。数字化转型不仅仅是技术的升级&#xff0c;更是一场全方位的变革&#xff0c;…

3d模型为什么只显示线是什么原因怎么解决---模大狮模型网

在3D建模中&#xff0c;有时我们会遇到模型只显示线框&#xff0c;而没有填充色或纹理的情况。这种问题可能会导致场景的不协调和视觉效果的不理想&#xff0c;影响到我们的设计效率和效果。本文将探讨一些可能导致该问题的原因&#xff0c;并提供解决方法&#xff0c;以帮助您…

DUET: Cross-Modal Semantic Grounding for Contrastive Zero-Shot Learning论文阅读

文章目录 摘要1.问题的提出引出当前研究的不足与问题属性不平衡问题属性共现问题 解决方案 2.数据集和模型构建数据集传统的零样本学习范式v.s. DUET学习范式DUET 模型总览属性级别对比学习正负样本解释&#xff1a; 3.结果分析VIT-based vision transformer encoder.消融研究消…

导波光学理论基础

导波光学理论基础 一、电磁场基本方程 1.1 麦克斯韦方程组、物质方程、边值关系 麦克斯韦方程组 麦克斯韦方程组是一组微分方程&#xff0c;只能求得通解 如果需要唯一的确定各场矢量&#xff0c;还需补充一些边界条件 线性、静止、各向同性介质的物质方程 D ⃗ ε E ⃗ …

限流式保护器在户外汽车充装的应用

摘 要&#xff1a;国家标准GB51348-2019中规定储备仓库、电动车充电等场所的末端回路应设置限流式电气防火保护器。电气防火限流式保护器可以有效克服传统断路器、空气开关和监控设备存在的短路电流大、切断短路电流时间长、短路时产生的电弧火花大&#xff0c;以及使用寿命短等…

MySQL:ERROR 1067 - Invalid default value for ‘end_time‘【解决办法】

问题描述&#xff08;mysql版本&#xff1a;5.7.36&#xff09;&#xff1a; 今天在使用Navicat可视化工具运行sql文件&#xff0c;发生如下错误&#xff1a; 在图中&#xff0c;sql是没有错误的&#xff0c;但是运行报错Invalid default value for end_time。 解决办法&#…

模型的权值平均的原理和Pytorch的实现

一、前言 模型权值平均是一种用于改善深度神经网络泛化性能的技术。通过对训练过程中不同时间步的模型权值进行平均&#xff0c;可以得到更宽的极值点&#xff08;optima&#xff09;并提高模型的泛化能力。 在PyTorch中&#xff0c;官方提供了实现模型权值平均的方法。 这里…

数据结构(2023-2024)

一、判断题 1.队列是一种插入和删除操作分别在表的两端进行的线性表&#xff0c;是一种先进后出的结构。&#xff08;F&#xff09; 队列先进先出&#xff0c;在表的一端插入元素&#xff0c;在表的另一端删除元素。允许插入的一端称为队尾&#xff08;rear&#xff09;&#…

搭建Docker私有镜像服务器

一、前言 1、本文主要内容 基于Decker Desktop&Docker Registry构建Docker私有镜像服务器测试在CentOS 7上基于Docker Registry搭建公共Docker镜像服务器修改Docker Engine配置以HTTP协议访问Docker Registry修改Docker Engine配置通过域名访问Docker Registry配置SSL证书…

了解不同方式导入导出的速度之快

目录 一、用工具导出导入 Navicat&#xff08;速度慢&#xff09; 1.1、导入&#xff1a; 共耗时&#xff1a; 1.2、导出表 共耗时&#xff1a; 二、用命令语句导出导入 2.1、mysqldump速度快 导出表数据和表结构 共耗时&#xff1a; 只导出表结构 导入 共耗时&…

C#,字符串匹配算法(模式搜索)Z算法的源代码与数据可视化

Z算法也是模式搜索&#xff08;Pattern Search Algorithm&#xff09;的常用算法。 本文代码的运算效果&#xff1a; 一、Z 算法 线性时间模式搜索算法的Z算法&#xff0c;在线性时间内查找文本中模式的所有出现。 假设文本长度为 n&#xff0c;模式长度为 m&#xff0c;那么…

__init__中的__getattr__方法

结论: 在 __init__.py 文件中定义的 __getattr__ 方法,如果存在的话,通常用于处理包级别的属性访问。在包级别,__getattr__ 方法在导入模块时被调用,而不是在实例化包时。当你尝试访问包中不存在的属性时,__getattr__ 方法会被调用,给你一个机会来处理这个属性访问。 …

Linux第24步_安装windows下的VisualStudioCode软件

Windows下的VSCode安装后&#xff0c;还需要安装gcc编译器和g编译器。 gcc&#xff1a;编译C语言程序的编译器&#xff1b; g&#xff1a;编译C代码的编译器&#xff1b; 1、在Windows下安装VSCode&#xff1b; 双击“VSCodeUserSetup-x64-1.50.1.exe”,直到安装完成。 2、…

ride无法使用open Browser关键字

一般是版本兼容性问题。将robotframework版本降级为&#xff1a;3.1.2 pip install robotframework3.1.2 2、仍然没有得到解决时&#xff0c;查看robotframework-selenium2library版本 pip list 将robotframework-seleniumlibrary也改成3.XX的版本就可以了 pip unstall robotfr…

Git远端删除的分支,本地依然能看到 git remote prune origin

在远端已经删除ylwang_dev_786等三四个分支&#xff0c;本地git branch -a 时 依然显示存在。 执行 git remote show origin 会展示被删除的那些分支 当你在Git远程仓库&#xff08;如GitLab&#xff09;上删除一个分支后&#xff0c;这个变更不会自动同步到每个开发者的本地…