竞赛保研 基于深度学习的水果识别 设计 开题 技术

1 前言

Hi,大家好,这里是丹成学长,今天做一个 基于深度学习的水果识别demo

这是一个较为新颖的竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 开发简介

深度学习作为机器学习领域内新兴并且蓬勃发展的一门学科, 它不仅改变着传统的机器学习方法, 也影响着我们对人类感知的理解,
已经在图像识别和语音识别等领域取得广泛的应用。 因此, 本文在深入研究深度学习理论的基础上, 将深度学习应用到水果图像识别中,
以此来提高了水果图像的识别性能。

3 识别原理

3.1 传统图像识别原理

传统的水果图像识别系统的一般过程如下图所示,主要工作集中在图像预处理和特征提取阶段。

在大多数的识别任务中, 实验所用图像往往是在严格限定的环境中采集的, 消除了外界环境对图像的影响。 但是实际环境中图像易受到光照变化、 水果反光、
遮挡等因素的影响, 这在不同程度上影响着水果图像的识别准确率。

在传统的水果图像识别系统中, 通常是对水果的纹理、 颜色、 形状等特征进行提取和识别。

在这里插入图片描述

3.2 深度学习水果识别

CNN 是一种专门为识别二维特征而设计的多层神经网络, 它的结构如下图所示,这种结构对平移、 缩放、 旋转等变形具有高度的不变性。

在这里插入图片描述

学长本次采用的 CNN 架构如图:
在这里插入图片描述

4 数据集

  • 数据库分为训练集(train)和测试集(test)两部分

  • 训练集包含四类apple,orange,banana,mixed(多种水果混合)四类237张图片;测试集包含每类图片各两张。图片集如下图所示。

  • 图片类别可由图片名称中提取。

训练集图片预览

在这里插入图片描述

测试集预览
在这里插入图片描述

数据集目录结构
在这里插入图片描述

5 部分关键代码

5.1 处理训练集的数据结构

import os
import pandas as pd    

train_dir = './Training/'
test_dir = './Test/'
fruits = []
fruits_image = []

for i in os.listdir(train_dir):
    for image_filename in os.listdir(train_dir + i):
        fruits.append(i) # name of the fruit
        fruits_image.append(i + '/' + image_filename)
train_fruits = pd.DataFrame(fruits, columns=["Fruits"])
train_fruits["Fruits Image"] = fruits_image

print(train_fruits)

5.2 模型网络结构

import matplotlib.pyplot as plt
​    import seaborn as sns
​    from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img
​    from glob import glob
​    from keras.models import Sequential
​    from keras.layers import Conv2D, MaxPooling2D, Activation, Dropout, Flatten, Dense
​    img = load_img(train_dir + "Cantaloupe 1/r_234_100.jpg")
​    plt.imshow(img)
​    plt.axis("off")
​    plt.show()
​    

    array_image = img_to_array(img)
    
    # shape (100,100)
    print("Image Shape --> ", array_image.shape)
    
    # 131个类目
    fruitCountUnique = glob(train_dir + '/*' )
    numberOfClass = len(fruitCountUnique)
    print("How many different fruits are there --> ",numberOfClass)
    
    # 构建模型
    model = Sequential()
    model.add(Conv2D(32,(3,3),input_shape = array_image.shape))
    model.add(Activation("relu"))
    model.add(MaxPooling2D())
    model.add(Conv2D(32,(3,3)))
    model.add(Activation("relu"))
    model.add(MaxPooling2D())
    model.add(Conv2D(64,(3,3)))
    model.add(Activation("relu"))
    model.add(MaxPooling2D())
    model.add(Flatten())
    model.add(Dense(1024))
    model.add(Activation("relu"))
    model.add(Dropout(0.5))
    
    # 区分131类
    model.add(Dense(numberOfClass)) # output
    model.add(Activation("softmax"))
    model.compile(loss = "categorical_crossentropy",
    
                  optimizer = "rmsprop",
    
                  metrics = ["accuracy"])
    
    print("Target Size --> ", array_image.shape[:2])


## 

5.3 训练模型

    
​    train_datagen = ImageDataGenerator(rescale= 1./255,
​                                       shear_range = 0.3,
​                                       horizontal_flip=True,
​                                       zoom_range = 0.3)
​    

    test_datagen = ImageDataGenerator(rescale= 1./255)
    epochs = 100
    batch_size = 32
    train_generator = train_datagen.flow_from_directory(
                    train_dir,
                    target_size= array_image.shape[:2],
                    batch_size = batch_size,
                    color_mode= "rgb",
                    class_mode= "categorical")
    
    test_generator = test_datagen.flow_from_directory(
                    test_dir,
                    target_size= array_image.shape[:2],
                    batch_size = batch_size,
                    color_mode= "rgb",
                    class_mode= "categorical")
    
    for data_batch, labels_batch in train_generator:
        print("data_batch shape --> ",data_batch.shape)
        print("labels_batch shape --> ",labels_batch.shape)
        break
    
    hist = model.fit_generator(
            generator = train_generator,
            steps_per_epoch = 1600 // batch_size,
            epochs=epochs,
            validation_data = test_generator,
            validation_steps = 800 // batch_size)
    
    #保存模型 model_fruits.h5
    model.save('model_fruits.h5')


顺便输出训练曲线

    #展示损失模型结果
​    plt.figure()
​    plt.plot(hist.history["loss"],label = "Train Loss", color = "black")
​    plt.plot(hist.history["val_loss"],label = "Validation Loss", color = "darkred", linestyle="dashed",markeredgecolor = "purple", markeredgewidth = 2)
​    plt.title("Model Loss", color = "darkred", size = 13)
​    plt.legend()
​    plt.show()#展示精确模型结果
    plt.figure()
    plt.plot(hist.history["accuracy"],label = "Train Accuracy", color = "black")
    plt.plot(hist.history["val_accuracy"],label = "Validation Accuracy", color = "darkred", linestyle="dashed",markeredgecolor = "purple", markeredgewidth = 2)
    plt.title("Model Accuracy", color = "darkred", size = 13)
    plt.legend()
    plt.show()


![在这里插入图片描述](https://img-blog.csdnimg.cn/686ace7db27c4145837ec2e09e8ad917.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBARGFuQ2hlbmctc3R1ZGlv,size_17,color_FFFFFF,t_70,g_se,x_16)

在这里插入图片描述

6 识别效果

from tensorflow.keras.models import load_model
import os
import pandas as pd
from keras.preprocessing.image import ImageDataGenerator,img_to_array, load_img
import cv2,matplotlib.pyplot as plt,numpy as np
from keras.preprocessing import image

train_datagen = ImageDataGenerator(rescale= 1./255,
                                    shear_range = 0.3,
                                    horizontal_flip=True,
                                    zoom_range = 0.3)

model = load_model('model_fruits.h5')
batch_size = 32
img = load_img("./Test/Apricot/3_100.jpg",target_size=(100,100))
plt.imshow(img)
plt.show()

array_image = img_to_array(img)
array_image = array_image * 1./255
x = np.expand_dims(array_image, axis=0)
images = np.vstack([x])
classes = model.predict_classes(images, batch_size=10)
print(classes)
train_dir = './Training/'

train_generator = train_datagen.flow_from_directory(
        train_dir,
        target_size= array_image.shape[:2],
        batch_size = batch_size,
        color_mode= "rgb",
        class_mode= "categorical”)
print(train_generator.class_indices)

在这里插入图片描述

    fig = plt.figure(figsize=(16, 16))
    axes = []
    files = []
    predictions = []
    true_labels = []
    rows = 5
    cols = 2
# 随机选择几个图片
def getRandomImage(path, img_width, img_height):
    """function loads a random image from a random folder in our test path"""
    folders = list(filter(lambda x: os.path.isdir(os.path.join(path, x)), os.listdir(path)))
    random_directory = np.random.randint(0, len(folders))
    path_class = folders[random_directory]
    file_path = os.path.join(path, path_class)
    file_names = [f for f in os.listdir(file_path) if os.path.isfile(os.path.join(file_path, f))]
    random_file_index = np.random.randint(0, len(file_names))
    image_name = file_names[random_file_index]
    final_path = os.path.join(file_path, image_name)
    return image.load_img(final_path, target_size = (img_width, img_height)), final_path, path_class

def draw_test(name, pred, im, true_label):
    BLACK = [0, 0, 0]
    expanded_image = cv2.copyMakeBorder(im, 160, 0, 0, 300, cv2.BORDER_CONSTANT, value=BLACK)
    cv2.putText(expanded_image, "predicted: " + pred, (20, 60), cv2.FONT_HERSHEY_SIMPLEX,
        0.85, (255, 0, 0), 2)
    cv2.putText(expanded_image, "true: " + true_label, (20, 120), cv2.FONT_HERSHEY_SIMPLEX,
        0.85, (0, 255, 0), 2)
    return expanded_image
IMG_ROWS, IMG_COLS = 100, 100

# predicting images
for i in range(0, 10):
    path = "./Test"
    img, final_path, true_label = getRandomImage(path, IMG_ROWS, IMG_COLS)
    files.append(final_path)
    true_labels.append(true_label)
    x = image.img_to_array(img)
    x = x * 1./255
    x = np.expand_dims(x, axis=0)
    images = np.vstack([x])
    classes = model.predict_classes(images, batch_size=10)
    predictions.append(classes)

class_labels = train_generator.class_indices
class_labels = {v: k for k, v in class_labels.items()}
class_list = list(class_labels.values())

for i in range(0, len(files)):
    image = cv2.imread(files[i])
    image = draw_test("Prediction", class_labels[predictions[i][0]], image, true_labels[i])
    axes.append(fig.add_subplot(rows, cols, i+1))
    plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    plt.grid(False)
    plt.axis('off')
plt.show()

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/307981.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

JVM基础(3)——JVM垃圾回收机制

作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO 联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬 学习必须往深处挖&…

复合机器人作为一种新型的智能制造装备高效、精准和灵活的生产方式

随着汽车制造业的快速发展,对于高效、精准和灵活的生产方式需求日益增强。复合机器人作为一种新型的智能制造装备,以其独特的优势在汽车制造中发挥着越来越重要的作用。因此,富唯智能顺应时代的发展趋势,研发出了ICR系列的复合机器…

计算机毕业设计 | SpringBoot航空订票 机票预定购买系统(附源码)

1, 概述 1.1 选题目的 目前,国内航空公司的数量和规模都在扩大,国外航空公司也纷纷着陆中国,这些航空公司之间的竞争可谓日益激烈。配备一个安全、高效、灵活、可靠的客户服务中心系统对于航空公司加强客户服务质量,…

使用Android Compose实现网格列表滑到底部的提示信息展示

文章目录 概述1 效果对比1.1 使用添加Item的办法:1.2 使用自定义的方法 2. 效果实现2.1 列表为空时的提示页面实现2.2 添加Item的方式代码实现2.3 使用自定义的方式实现 3. UI工具类 概述 目前大多数的APP都会使用列表的方式来呈现内容,例如淘宝&#x…

解决Echarts y轴文本超出容器问题

解决Echarts y轴文本超出容器问题 一开始好好的 数据变多之后就被挤出去了 解决方法: // echarts的grid属性 主要就是containLabel这个属性的配置 不设置的话他默认是false, 主要是包含是否包含刻度标签grid: {left: "5%",right: "10%",botto…

linux 里面在docker 里面安装pg 数据库(亲测有效)

目录 1 上传 1 上传 上传之后tar 包,将他变成镜像 输入docker images,发现目前是没有镜像的,现在将tar 包变成镜像 docker load -i postgresql.tar以上就将tar 包变成镜像了 现在在宿主机找一个地方,存放数据库的数据 /home/softinstall/…

全网独家:基于openEuler-20.03-LTS-SP4底包构建opengaussV5.0.1LTS的单机极简版数据库容器

本文尝试基于openEuler-20.03-LTS-SP4底包构建opengaussV5.0.1LTS的单机版极简版数据库容器。 一、软件包源 1、openEuler-20.03-LTS容器底包 openEuler-20.03-LTS-SP4 下载链接 sha256:24d8f51c1f3a79eb975c4e498cadd9055bfd708d66c15935ec46664d0f975a7b openEuler-dock…

@DependsOn:解析 Spring 中的依赖关系之艺术

欢迎来到我的博客,代码的世界里,每一行都是一个故事 DependsOn:解析 Spring 中的依赖关系之艺术 前言简介基础用法高级用法在 XML 配置中使用 DependsOn通过 Java Config 配置实现依赖管理 生命周期与初始化顺序Bean 生命周期的关键阶段&…

高照数量关系(一)—— 倍数特性、方程问题、周期问题

倍数特性 整除型 (1)口诀法:(常用于3、4、5、9)3/9看各个位数字之和,5看末位,4看末两位。 3/9 -> 看各位数字之和能否被3/9整除,例:124345 2/5 ->看数字末一位能…

【Linux】进程

----------------| 本文目录 |---------------- 1. 进程1.1 基本概念1.2 描述进程 - PCB1.2.1 task_struct - PCB的一种1.2.2 task_struct 内容分类 1.3 组织进程1.4 查看进程1.5 通过系统调用获取进程标示符1.6 通过系统调用创建进程 - fork初识 2. 进程状态2.1 看看Linux内核…

美创科技第59号安全实验室最新力作!《内网渗透实战攻略》出版发行

总结先进攻防实战经验,基于创新入侵生命周期模型,为提升渗透实战能力提供系统操作教程!近期,美创科技创始人&CEO柳遵梁,美创第59号安全实验室(王月兵、覃锦端、毛菲、刘聪等)撰写的新书《内…

时空序列问题的本质和底层逻辑

本质:Still need to polish this. 底层逻辑:Still need to polish this.See you pretty soon. Reference 【时空序列预测】什么是时空序列问题?这类问题主要应用了哪些模型?主要应用在哪些领域?_mb62b92582e5a0a的技…

办公场景日益多样化 企业如何保持安全?

当前,企业的办公场景日益多样化。远程办公、移动办公、云办公、分支机构等,这些新的办公场景也带来了新的网络安全挑战。以下将介绍一些办公场景带来的安全威胁。 1、远程办公:员工可以在任何地方工作,但同时也带来了网络安全的隐…

支付宝电脑端支付代码

在学习某些项目需要用到支付功能,如支付宝支付。 详细配置 演示沙箱环境下支付,沙箱环境和正式支付只不过一些参数不同 像AppId PrivateKey AlipayPublicKey gatewayUrl 这些参数会有不同。 代码配置 @Component @Data public class payConfig {private String PrivateKey…

springboot配置多数据源

在开发过程中&#xff0c;为了满足需求&#xff0c;会从第三方获取需要的数据&#xff0c;这个时候&#xff0c;除了使用原始的jdbc方式读取数据外&#xff0c;还可以配置多数据源来获取我们想要的数据。 第一步&#xff1a;pom.xml添加依赖 <dependency><groupId>…

JPackage指令将可执行Jar包打包成EXE运行程序

jpackage是jdk14正式加入的一个用于独立打包的工具。 官网简介翻译&#xff1a; jpackage工具将以Java应用程序和Java运行时映像作为输入&#xff0c;并生成一个包含所有必要依赖项的Java应用程序映像。它可以生成特定于平台格式的本机软件包&#xff0c;例如Windows上的exe或…

KVM系统虚拟化性能测试过程总结

buildroot编译 为啥要用buildroot 支持很多&#xff1a;交叉编译工具链、根文件系统生成、内核映像编译和引导加载程序编译。使用简单&#xff1a;使用类似内核的menuconfig、gconfig和xconfig配置界面&#xff0c;使用buildroot构建基本系统很容易。支持很多的包&#xff1a…

1.10 Unity中的数据存储 XML

一、XML 1.介绍 XML是一个文档后缀名是*.xmlXML是一个特殊格式的文档XML是可扩展的标记性语言XML是Extentsible Markup Language的缩 写XML是由万维网联盟(W3C)创建的标记语言&#xff0c;用于定义编码人类和机器可以读取的文档的语法。它通过使用定义文档结构的标签以及如何…

基于ubuntu2204使用kubeadm部署k8s集群

部署k8s集群 基础环境配置安装container安装runc安装CNI插件部署1.24版本k8s集群&#xff08;flannel&#xff09;安装crictl使用kubeadm部署集群节点加入集群部署flannel网络配置dashboard 本集群基于ubuntu2204系统使用kubeadm工具部署1.24版本k8s&#xff0c;容器运行时使用…

AIGC视频生成:Pika1.0快速入门详解

Pika1.0快速入门详解 一、简介二、登录三、参数设置1、改变画面大小&#xff08;Aspect ratio&#xff09;2、改变帧数大小&#xff08;Frames per second&#xff09;3、镜头平移&#xff08;Camera control&#xff09;4、画面运动控制&#xff08;Strength of motion&#x…