AI老照片修复-Bringing-Old-Photos-Back-to-Life

🏡 个人主页:IT贫道-CSDN博客

 🚩 私聊博主:私聊博主加WX好友,获取更多资料哦~

 🔔 博主个人B栈地址:豹哥教你学编程的个人空间-豹哥教你学编程个人主页-哔哩哔哩视频


目录

1. AI老照片修复原理-VAE

1.1 自编码器模型

1.2 变分自编码器模型VAE原理

1.3 VAE与GAN的对比

2. AI老照片修复基础环境准备

 2.1  安装Anconda3

2.2 安装Python3

2.3 安装CUDA

2.4 安装CUDNN

3.  AI老照片修复步骤

 3.1 下载“Bringing-Old-Photos-Back-to-Life”项目

3.2  下载项目依赖

3.3  下载人脸识别模型

3.4  下载预训练模型

3.5  安装需要python依赖包

3.6 照片修复


1. AI老照片修复原理-VAE

1.1 自编码器模型

自编码器模型基本思路很容易理解:把一堆真实样本通过编码器网络变换成一个理想的数据分布,然后这个数据分布在传递给一个解码器网络,得到一堆生成样本,生成样本与真实样本足够接近的话,就训练出来一个自编码器模型。

如图,X本身是一个矩阵,通过一个变换W变成了一个低维矩阵c,因为这一过程是线性的,所以再通过一个WT变换就能还原出一个,现在我们要找到一种变换W,使得矩阵X与X帽子 能够尽可能地一致,这大致可以理解为编码解码的原理。

一般我们在训练模型时都会使用神经网络来进行多层编码转换,这种模型叫做Deep Auto-Encoder模型,如下图:

这一替换的明显好处是,引入了神经网络强大的拟合能力,使得编码(Code)的维度能够比原始图像(X)的维度低非常多。在一个手写数字图像的生成模型中,Deep Auto-Encoder能够把一个784维的向量(28*28图像)压缩到只有30维,并且解码回的图像具备清楚的辨认度(如下图)

至此我们构造出了一个重构图像比较清晰的自编码模型。简单来说,AI就是一个擅长总结和“学习”的高级算法,比如,人类只需要为AI同学提供大量同类型图片,看得足够多,量足够大,AI就能从其中得出一个基本算法公式,再举一反三,根据不同的图像上已知的点,算出周围若干点的位置。人脸识别道理也是一样。

当我们"喂"给AI模型一张它从没有在训练中处理过的且有很大缺陷的图片,AI模型可能会失控并且产生不可用的结果,可能不能正确分类图片。解决这种问题就需要在训练模型时加入缺陷图片,增大训练集,以防止使用模型时应对各种情况。

那么假设现在我们需要一种模型,这种模型能在一堆图片中给我们识别出哪些图像是清洗的,哪些图像不是清晰的,那么我们要按照以上方式来构建模型的话,几乎不可能,因为我们不可能将每张图片清洗到模糊的情况都准备出来,就算准备出来,所以无法使用以上自编码器模型实现清晰图像和非清晰图像的区分。

1.2 变分自编码器模型VAE原理

自编码器模型可以根据很多图像来训练模型,如果保存了某张图像的编码向量,我们随时就能用解码组件来重建该图像,这个过程仅需要一个自编码器模型即可。那么假设我们现在要的是一个生成式模型,而非仅仅是“记忆”图像数据的模糊结构,除了像前面那样从已有图像中编码出潜在的向量,我们还不知道如何创造这些向量,也就无法凭空生成任何图像,可以通过VAE模型来生成不同的图像。

VAE (Variational autoencoder)就是在自编码器模型上做进一步的变分处理,使得编码器的输出结果能对应到目标分布的均值和方差,如下图所示:

VAE最想解决的问题是什么?当然是如何构造编码器和解码器,使得图片能够编码成易于表示的形态,并且这一形态能够尽可能无损地解码回原真实图像。

举个例子:假设我们需要构建一个模型需要判断月亮是大于半月还是小于半月,但是现在的问题是我们手上有很少的数据,只有初一和十五的月亮图片,如下图:

如果使用以上数据来训练分类模型,模型只能区分以上两种月亮类型,那么如果未来有一张如下的月亮图形,就有可能不能正常分类:

那么我们可以通过VAE根据最初的两类数据来搞出一些数据来,模拟出从初一到三十每天的月亮情况。如下:

假设月亮的样子是由南北半球和每个月的日期这两个因素所决定的,假设这些因素服从正态分布(当然这里这两个因素不服从正态分布),那么我们的任务就是通过初一和十五这两个数据(当然实际上要更过一些)用VAE来训练处这些正态分布的均值和方差,如南北半球的维度和每个月的日期。训练的目标就是假设初一和十五的月亮的影响因素也是服从这个正态分布的,那么通过这个分布一样可以还原出初一到十五的月亮。

我们先来分析一下现有标准自编码模型无法达到这一标准的原因。

如上图所示,假设有两张训练图片,一张是全月图,一张是半月图,经过训练我们的自编码器模型已经能无损地还原这两张图片。接下来,我们在code空间上,两张图片的编码点中间处取一点,然后将这一点交给解码器,我们希望新的生成图片是一张清晰的图片(类似3/4全月的样子)。但是,实际的结果是,生成图片是模糊且无法辨认的乱码图。一个比较合理的解释是,因为编码和解码的过程使用了深度神经网络,这是一个非线性的变换过程,所以在code空间上点与点之间的迁移是非常没有规律的。

如何解决这个问题呢?我们可以引入噪声,使得图片的编码区域得到扩大,从而掩盖掉失真的空白编码点。

如上图所示,现在在给两张图片编码的时候加上一点噪音,使得每张图片的编码点出现在绿色箭头所示范围内,于是在训练模型的时候,绿色箭头范围内的点都有可能被采样到,这样解码器在训练时会把绿色范围内的点都尽可能还原成和原图相似的图片。然后我们可以关注之前那个失真点,现在它处于全月图和半月图编码的交界上,于是解码器希望它既要尽量相似于全月图,又要尽量相似于半月图,于是它的还原结果就是两种图的折中(3/4全月图)。

由此我们发现,给编码器增添一些噪音,可以有效覆盖失真区域。不过这还并不充分,因为在上图的距离训练区域很远的黄色点处,它依然不会被覆盖到,仍是个失真点。为了解决这个问题,我们可以试图把噪音无限拉长,使得对于每一个样本,它的编码会覆盖整个编码空间,不过我们得保证,在原编码附近编码的概率最高,离原编码点越远,编码概率越低。在这种情况下,图像的编码就由原先离散的编码点变成了一条连续的编码分布曲线,如下图所示。

那么上述的这种将图像编码由离散变为连续的方法,就是变分自编码的核心思想。

1.3 VAE与GAN的对比

VAE相比GAN的优势在于,GAN是implicit density,意思是它对潜变量的分布隐式建模,整个GAN训练完后我们是不知道潜变量具体分布是怎么样的,也就无法随心所欲生成想要的图片,我们只能任意的输入一个噪声,然后网络的生成数据看起来像训练数据集中的数据。但是VAE是explict density,它对潜变量的分布显式建模,我们训练完VAE后是可以得到潜变量的具体分布的,因此也就可以指定生成的数据的样子。

VAE相比GAN的劣势在于,它没有GAN那样的判别器,所以最后生成的数据会比较模糊(以图片数据为例)。当然也有结合VAE和GAN的工作。

2. AI老照片修复基础环境准备

2.1  安装Anconda3

Anaconda是一个开源的Python发行版本,python是一个编译器,如果不使用Anaconda那么安装起来会比较痛苦,各个库之间的依赖性就很难连接的很好。Anaconda可以看做Python的一个集成安装,里面集成了很多关于python科学计算的第三方库,安装它后就默认安装了python、IPython、集成开发环境Spyder和众多的包和模块,包含了conda(conda 是开源包(packages)和虚拟环境(environment)的管理系统。)、Python等180多个科学包及其依赖项。因为包含了大量的科学包,Anaconda 的下载文件比较大,大概几百兆左右,如果只需要某些包,或者需要节省带宽或存储空间,也可以使用Miniconda这个较小的发行版(仅包含conda和 Python)。

我们可以从Anaconda官网 Anaconda | The World’s Most Popular Data Science Platform 下载Anaconda,一般官网下载比较慢,可以选择使用镜像下载,地址如下:

Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

现在之后直接双击安装即可,注意安装路径中不要有中文和空格。安装完成之后,配置环境变量,如下图:

配置完成之后,打开CMD命令窗口输入:conda,验证是否安装成功:

2.2 安装Python3

基于Anconda安装Python3,这里安装python使用至少python3.7版本。命令如下:

#安装python环境

conda create --name python37_face python=3.7



#卸载python环境

conda remove --name python37_face --all

2.3 安装CUDA

CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台。CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU(图形处理器)能够解决复杂的计算问题。

在Window中安装CUDA,可以进入网址:
CUDA Toolkit 12.3 Update 2 Downloads | NVIDIA Developer 

也可以从这里下载:链接:https://pan.baidu.com/s/1VqzN4hgOHanP_gGYOgTG9g?pwd=8888 
提取码:8888

下载后直接双击exe文件安装即可。默认安装在了C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3,也可以指定路径安装。

另外,可能某些电脑环境问题,安装CUDA时缺少dll库,不能自动准备dll文件,那么我们将下载好的dll目录中的文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin 目录下(这里下载dl:https://download.csdn.net/download/qq_32020645/88714133)。这样后期GPU能正常工作。下载解压后的dll文件如下:

2.4 安装CUDNN

NVIDIA CUDNN是用于深度神经网络的GPU加速库。它强调性能、易用性和低内存开销。NVIDIA CUDNN可以集成到更高级别的机器学习框架中,如谷歌的Tensorflow、加州大学伯克利分校的流行caffe软件。简单的插入式设计可以让开发人员专注于设计和实现神经网络模型,而不是简单调整性能,同时还可以在GPU上实现高性能现代并行计算。

CUDA看作是一个工作台,上面配有很多工具,如锤子、螺丝刀等。CUDNN是基于CUDA的深度学习GPU加速库,有了它才能在GPU上完成深度学习的计算。它就相当于工作的工具,比如它就是个扳手。但是CUDA这个工作台买来的时候,并没有送扳手。想要在CUDA上运行深度神经网络,就要安装CUDNN,就像你想要拧个螺帽就要把扳手买回来。这样才能使GPU进行深度神经网络的工作,工作速度相较CPU快很多。

在https://developer.nvidia.com/zh-cn/cudnn网站中下载CUDNN,可能需要科学上网需要注册后,需要填写问卷才能下载,这里需要与CUDA版本对应关系。也可以从这里下载:链接:https://pan.baidu.com/s/1vVKPMWe0AYFzBbzCjBGurg?pwd=8888 
提取码:8888

下载完成之后解压,进入解压目录,如下图:

找到CUDA的安装目录,替换对应目录里面对应的文件即可:

  • bin文件夹里面有一个文件需要替换。
  • include文件夹里面有一个文件需要替换。
  • lib文件夹里面有个x64文件夹中有一个文件需要替换。

3.  AI老照片修复步骤

 3.1 下载“Bringing-Old-Photos-Back-to-Life”项目

项目下载地址:

https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life

下载后解压到没有中文路径,这里解压路径为J:\Bringing-Old-Photos-Back-to-Life-master。

3.2  下载项目依赖

项目需要一些依赖的文件,下载地址:

GitHub - vacancy/Synchronized-BatchNorm-PyTorch: Synchronized Batch Normalization implementation in PyTorch.

下载的文件名称为:Synchronized-BatchNorm-PyTorch-master.zip。(也可以从这里下载:链接:https://pan.baidu.com/s/1-BnABnKORAE1tUsDzg_xqw?pwd=8888 
提取码:8888)将下载后的文件解压,将解压目录中的“sync_batchnorm”目录整个拷贝到“J:\Bringing-Old-Photos-Back-to-Life-master\Face_Enhancement\models\networks”目录下和“J:\Bringing-Old-Photos-Back-to-Life-master\Global\detection_models”目录下。

3.3  下载人脸识别模型

这里下载的就是人脸识别模型,是别人训练好的模型,大小为61M。下载地址:

http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2

下载好的文件名称为:“shape_predictor_68_face_landmarks.dat.bz2”(也可从这里下载:链接:https://pan.baidu.com/s/1ijg8MGrf5zL_IYwruGlUBA?pwd=8888 
提取码:8888),下载完成后把里面文件“shape_predictor_68_face_landmarks.dat”放入“J:\Bringing-Old-Photos-Back-to-Life-master\Face_Detection”路径下。

3.4  下载预训练模型

预训练好的模型有2个,第一个下载地址:https://facevc.blob.core.windows.net/zhanbo/old_photo/pretrain/Face_Enhancement/checkpoints.zip

下载完成后,对应的文件名称“checkpoints.zip”(326M),(也可从这里下载:链接:https://pan.baidu.com/s/1Mz9iQUw2SaPvvqUy7nhfOQ?pwd=8888 
提取码:8888)解压,将“checkpoints”这个目录拷贝到“J:\Bringing-Old-Photos-Back-to-Life-master\Face_Enhancement”目录下。 

第二个下载地址:

https://facevc.blob.core.windows.net/zhanbo/old_photo/pretrain/Global/checkpoints.zip,下载完成后,对应的文件名称“checkpoints.zip”(1.61G),(也可从这里下载:链接:https://pan.baidu.com/s/1_YducU9TeJE3efpfeLV2qw?pwd=8888 
提取码:8888)解压,将“checkpoints”这个目录拷贝到“J:\Bringing-Old-Photos-Back-to-Life-master\Global”目录下。

  

​​​​​​​3.5  安装需要python依赖包

进入D:\ProgramData\Anaconda3\envs\python36_oldimage\Scripts,安装需要的python依赖包。

安装python包中torch、torchvision、torchaudio需要自己在pytorch官网下载,这个关于此项目能否正常使用GPU。如果直接pip install 安装对应的包后期会报错。可以在pytorch官网找到正确pip安装的方式:pip3 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio===0.9.0 -f https://download.pytorch.org/whl/torch_stable.html ,涉及到的torch 大概3G多,下载非常慢,所以手动下载whl文件安装最好,手动下载依赖包地址:https://download.pytorch.org/whl/torch_stable.html,下载好的文件名称如下(这里也可下载:链接:https://pan.baidu.com/s/1ypyS40kc8OFLY50J4Jxxnw?pwd=8888 
提取码:8888):

torch-1.9.0+cu111-cp36-cp36m-win_amd64.whl

torchvision-0.10.0+cu111-cp36-cp36m-win_amd64.whl

torchaudio-0.9.0-cp36-cp36m-win_amd64.whl

使用pip命令安装以上包需要按照顺序安装,安装命令如下:

pip install torch-1.9.0+cu111-cp36-cp36m-win_amd64.whl

pip install torchvision-0.10.0+cu111-cp36-cp36m-win_amd64.whl

pip install torchaudio-0.9.0-cp36-cp36m-win_amd64.whl

除了以上pytorch相关包下载非常难之外,还有一个包需要手动下载:dlib,这个pip安装问题不大,但是pip安装时会检测环境导致缺其他包安装不成功。所以这里也手动下载,python3.6对应下载地址:

https://pypi.org/packages/da/06/bd3e241c4eb0a662914b3b4875fc52dd176a9db0d4a2c915ac2ad8800e9e/dlib-19.7.0-cp36-cp36m-win_amd64.whl#md5=b7330a5b2d46420343fbed5df69e6a3f

python3.7对应下载地址:

https://github.com/daiera/some_resources/blob/master/dlib-19.17.0-cp37-cp37m-win_amd64.whl

同样,下载完成之后,直接pip安装即可:

pip install dlib-19.17.0-cp36-cp36m-win_amd64.whl

除了以上包之外,还需要安装python的包如下,直接pip安装即可。

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple scikit-image
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple easydict
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple PyYAML
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple dominate>=2.3.1
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple dill
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorboardX
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple scipy
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple einops
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple PySimpleGUI

3.6 照片修复

准备老照片路径:

“J:\Bringing-Old-Photos-Back-to-Life-master\old-image”

准备修复后的路径:

“J:\Bringing-Old-Photos-Back-to-Life-master\repair-image”

执行如下步骤修复照片:

1) 切换python36环境

在“J:\Bringing-Old-Photos-Back-to-Life-master”路径下右键打开命令行,执行如下命令切换python36_oldimage python环境

conda activate python36_oldimage

2) 启动程序修复图片

在打开的cmd窗口中执行如下命令:

python J:\Bringing-Old-Photos-Back-to-Life-master\run.py --input_folder J:\Bringing-Old-Photos-Back-to-Life-master\old-image --output_folder J:\Bringing-Old-Photos-Back-to-Life-master\repair-image --GPU 0

如果照片中有褶皱,那么可以在命令最后执行  --with_scratch参数,命令如下:

python J:\Bringing-Old-Photos-Back-to-Life-master\run.py --input_folder J:\Bringing-Old-Photos-Back-to-Life-master\old-image --output_folder J:\Bringing-Old-Photos-Back-to-Life-master\repair-image --GPU 0 --with_scratch

​​​​​​​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/307728.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

mysql查询优化策略

exist和in的区别 其实很多人都搞不清什么时候用exist什么时候用in,前提是有索引(比如A.cc和B.cc),选择的标准是看表的大小。 总体宗旨试小表驱动大表,具体来说: 可能有点懵逼,让我们来捋下两者…

注意力机制简单理解

1. 什么是注意力机制? ​ 我们在日常的生活中对许多事物都有我们自己的注意力重点,通过注意力我们可以更加关注于我们注意的东西,从而过滤不太关注的信息。 看到一张人像图时,我们会更关注人的脸部,其次根据脸部再细分…

文件vcruntime140.dll找不到该怎么办?分析解决vcruntime140.dll

最近许多用户都说他们的电脑出现了一个提示,显示vcruntime140.dll文件缺失。你可能想知道这个突然出现的问题是怎么回事。实际上,这种情况通常意味着你的电脑中的vcruntime140.dll文件已经丢失了。这个DLL文件对于电脑上很多程序的运行至关重要&#xff…

Vue-9、Vue事件修饰符

1、prevent 阻止默认事件 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>事件修饰符</title><!--引入vue--><script type"text/javascript" src"https://cdn.jsdeliv…

websocket: 了解并利用nodejs实现webSocket前后端通信

目录 第一章 前言 1.1 起源 1.2 短轮询与长轮询 1.2.1 短轮询 1.2.2 长轮询 1.2.3 长连接&#xff08;SSE&#xff09; 1.2.4 websocket 第二章 利用Node以及ws创建webSocket服务器 2.1 创建ws服务器&#xff08;后端部分&#xff09; 2.1.1 了解一下 2.1.2 代创建W…

【mysql】—— 用户管理

目录 &#xff08;一&#xff09;为什么要有用户管理&#xff1f; &#xff08;二&#xff09;用户 2.1 查看用户信息 2.2 创建用户 2.3 删除用户 2.4 修改用户密码 &#xff08;三&#xff09;数据库的权限 3.1 给用户授权 3.2 回收权限 &#xff08;一&#xff09;为…

SEO 分步教程:初学者掌握的 8 个简单基础知识

如果您刚刚开始使用搜索引擎优化 &#xff08;SEO&#xff09;&#xff0c;那么分步 SEO 教程是有序的。在这一点上&#xff0c;你可能已经听说过一些基本术语&#xff0c;如关键词研究和页面优化。但是&#xff0c;您如何应用迄今为止收集的所有知识呢&#xff1f; 如果您刚刚…

EndNote20 下载与安装详细教程

扫描文末二维码&#xff0c;关注微信公众号&#xff1a;ThsPool 后台回复 a004 &#xff0c;免费领取 EndNote20下载安装包 EndNote是一款备受欢迎的文献管理软件&#xff0c;被数百万研究人员、学生和图书管理员广泛使用。它提供便捷的方式来扩展各种语言的参考书目&#xff0…

计算机网络——应用层(2)

计算机网络——应用层&#xff08;2&#xff09; 小程一言专栏链接: [link](http://t.csdnimg.cn/ZUTXU) Web和HTTP概念解读HTTPHTTP请求和响应包含内容常见的请求方法Web缓存优点缺点 总结 DNS提供的服务 小程一言 我的计算机网络专栏&#xff0c;是自己在计算机网络学习过程…

鸿蒙系列--属性动画

一、定义 当组件的通用属性发生改变时而产生的属性渐变效果 说明&#xff1a; 当组件的通用属性发生改变时&#xff0c;组件状态由初始状态逐渐变为结束状态的过程中&#xff0c;会创建多个连续的中间状态&#xff0c;逐帧播放后&#xff0c;就会形成动画 二、创建 给组件(如…

智能时代:自然语言生成SQL与知识图谱问答实战

语义解析 前言语义解析的应用场景总结概论语义解析和大模型的关系延伸阅读 前言 语义解析技术可以提高人机交互的效率和准确性&#xff0c;在自然语言处理、数据分析、智能客服、智能家居等领域都有广泛的应用前景。特别是在大数据时代&#xff0c;语义解析能够帮助企业更快速…

k8s的node亲和性和pod亲和性和反亲和性 污点 cordon drain

node亲和性和pod亲和性和反亲和性 污点 cordon drain 集群调度: schedule的调度算法 预算策略 过滤出合适的节点 优先策略 选择部署的节点 nodeName:硬匹配&#xff0c;不走调度策略&#xff0c;node01 nodeSelector:根据节点的标签选择&#xff0c;会走调度的算法 只…

Mac M1 Parallels CentOS7.9 Deploy Docker + Rancher + K8S(HA+More Master)

一、准备虚拟机资源 虚拟机清单 机器名称IP地址角色rancher10.211.55.200管理K8S集群k8svip10.211.55.199K8S VIPmaster0110.211.55.201K8S集群主节点master0210.211.55.202K8S集群主节点master0310.211.55.203K8S集群主节点node0110.211.55.211K8S集群从节点node0210.211.55…

ChatGPT扩展系列之网易数帆ChatBI

在当今数字化快速发展的时代,数据已经成为业务经营与管理决策的核心驱要素。无论是跨国大企业还是新兴创业公司,正确、迅速地洞察数据已经变得至关重要。然而,传统的BI工具往往对用户有一定的技术门槛,需要熟练的操作技能和复杂的查询语句,这使得大部分的企业员工难以深入…

Hadoop分布式文件系统(二)

目录 一、Hadoop 1、文件系统 1.1、文件系统定义 1.2、传统常见的文件系统 1.3、文件系统中的重要概念 1.4、海量数据存储遇到的问题 1.5、分布式存储系统的核心属性及功能含义 2、HDFS 2.1、HDFS简介 2.2、HDFS设计目标 2.3、HDFS应用场景 2.4、HDFS重要特性 2.4…

C++与Typescript的区别

目录 一、C类模板和函数模板 1.类模板 2.函数模板 二&#xff0c;Typescript 的泛型声明 1.泛型函数 2.泛型类 为什么C和Typescript语言中主张模板和泛型 一、C类模板和函数模板 在C中&#xff0c;类模板和函数模板允许你为多种数据类型编写通用的代码。这就像每个人都有…

PSoc62™开发板之PWM呼吸灯

实验目的 利用PWM动态调节输出功率达到控制LED呼吸变化的效果 实验准备 PSoc62™开发板&#xff08;开发板已经板载LED&#xff09; 板载资源 板载有多少pwm 创建工程例程&#xff0c;在libraries/HAL_Drivers/drv_pwm.h中查看BSP支持的pwm数量及对应的GPIO&#xff0c;可…

自动修复vcruntime140.dll丢失的解决办法,快速解决dll文件问题

在使用电脑时也会有不少用户都遇到vcruntime140.dll丢失的情况&#xff0c;那么有什么办法可以解决vcruntime140.dll丢失呢&#xff1f;今天将给大家分享一些关于vcruntime140.dll丢失的解决办法&#xff0c;从自动修复和手动修复两个方向给大家分析希望能够帮助到大家。 一.vc…

基于 Validator 类实现 ParamValidator,用于校验函数参数

目录 一、前置说明1、总体目录2、相关回顾3、本节目标 二、操作步骤1、项目目录2、代码实现3、测试代码4、日志输出 三、后置说明1、要点小结2、下节准备 一、前置说明 1、总体目录 《 pyparamvalidate 参数校验器&#xff0c;从编码到发布全过程》 2、相关回顾 使用 TypeV…

uniapp微信小程序投票系统实战 (SpringBoot2+vue3.2+element plus ) -投票创建后端实现

锋哥原创的uniapp微信小程序投票系统实战&#xff1a; uniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )_哔哩哔哩_bilibiliuniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )共计21条视频…