智能时代:自然语言生成SQL与知识图谱问答实战

语义解析

  • 前言
  • 语义解析的应用场景
  • 总结概论
  • 语义解析和大模型的关系
  • 延伸阅读

前言

语义解析技术可以提高人机交互的效率和准确性,在自然语言处理、数据分析、智能客服、智能家居等领域都有广泛的应用前景。特别是在大数据时代,语义解析能够帮助企业更快速地从大量的数据中获取有用的信息,从而提高决策效率。

语义解析的应用场景

场景一:

在一个繁忙的办公室里,李经理正在与他的团队成员进行一项重要的项目。他们需要不断地从公司的数据库中提取各种数据来支持他们的分析和决策。然而,团队成员们并非都是数据库专家,复杂的SQL查询语句常常让他们感到困惑和效率低下。

在这个关键时刻,李经理决定引入NL2SQL技术,为团队带来一种全新的数据交互体验。

NL2SQL(自然语言到SQL)技术允许用户通过自然语言描述他们想要查询的数据,然后自动将这些描述转化为SQL查询语句。这对于非数据库专家来说是一个巨大的福音,因为它消除了编写复杂SQL语句的需要。

李经理的团队成员小王想查找去年销售额超过100万的所有产品。在没有NL2SQL之前,他可能需要花费大量时间去编写SQL语句,或者请教数据库专家。但现在,他只需简单地对系统说:“请给我去年销售额超过100万的所有产品。” NL2SQL系统立即理解了他的需求,并将这个自然语言描述转化为相应的SQL查询语句,然后执行查询。

几秒钟后,小王就得到了他所需的数据,这大大节省了他的时间和精力。他不再需要担心SQL语句的语法和结构,也不再需要等待数据库专家的帮助。他可以专注于分析和决策,而不是纠结于数据提取的细节。

NL2SQL不仅提高了团队的效率,还增强了团队成员与数据库之间的交互体验。它使得数据库查询变得更加直观、自然和高效,从而加速了项目的进展并提高了决策的准确性。李经理对他的这个决定感到非常满意,NL2SQL技术为他的团队带来了实实在在的便利和价值。

场景二:

在一个繁忙的图书馆中,读者们穿梭在书架间,努力寻找他们感兴趣的书籍。图书馆管理员小杨则站在咨询台后面,不断回答着读者们关于书籍、作者和内容的各种问题。然而,随着图书馆藏书量的不断增加,她发现自己越来越难以迅速准确地回答所有问题。

在这个背景下,图书馆引入了KBQA(知识库问答)系统,为读者和管理员带来了前所未有的便利。

KBQA系统允许用户通过自然语言提问,并从图书馆的知识库中自动检索相关信息来回答问题。这个知识库包含了图书馆所有书籍的详细信息,包括作者、出版日期、内容摘要等。

一天,一位读者走到咨询台,询问:“请问有没有关于人工智能的最近出版的书籍?”在KBQA系统之前,小杨可能需要在图书馆目录中进行繁琐的搜索,或者让读者自己去查找。但现在,她只需简单地将问题输入到KBQA系统中。

系统立即理解了问题,并在知识库中进行了快速检索。检索内容是所有具有人工智能属性的书籍的信息。几秒钟后,它返回了几本最近出版的人工智能相关书籍的信息,包括书名、作者和出版日期。小杨将这些信息展示给读者,读者非常满意地离开了咨询台。

KBQA系统的引入不仅提高了图书馆服务的质量和效率,还增强了读者与图书馆之间的交互体验。读者们可以更加轻松地找到他们感兴趣的信息,而管理员也能更高效地回答读者的问题。这种自然、直观和高效的人机交互方式,使得图书馆成为了一个更加便捷、智能的学习和交流场所。

总结概论

从上述两个场景中,我们可以明显看到语义解析在人机交互中的巨大价值。无论是NL2SQL还是KBQA,它们的核心都在于对用户输入的自然语言进行深入的语义理解,并将其转化为机器可执行的指令或查询。这种转化能力不仅打破了用户与复杂数据库或知识库之间的障碍,让非专业用户也能轻松进行高级的数据操作或信息查询,还大大提高了交互的效率和准确性。更重要的是,语义解析技术使得机器能够更智能地响应用户需求,为用户提供更加个性化、精准的服务,从而增强了用户的使用体验和满意度。因此,语义解析不仅是实现自然、高效人机交互的关键,也是推动信息化社会向更高层次发展的重要驱动力之一。

通过自然语言查询数据库的意义在于提高效率和便捷性。随着技术的发展,知识存储方式也在不断演进,其中结构化和参数化是两种主要的存储方式。随着大模型运动的愈演愈烈,参数化存储可以将知识融入模型中,使得在输入时能够进行编码表示,这种方式有望逐渐取代传统的知识图谱。然而,即使机器学习模型将来达到与人类相当的水平,数据库和知识库仍然是必不可少的。因为知识图谱可能会演变成一种适合机器使用的机器词典,而不是现在我们所熟知的样子。所以参数化存储方式并不能完全替代结构化存储方式,也就是未来还是需要以数据库为代表的结构化知识存储方式。人要访问这些结构化知识,最为便捷的方式是通过自然语言进行查询。

通过自然语言查询数据库,用户可以以更加直观和高效的方式与数据库进行交互。相比于传统的查询语言,自然语言更加符合人类的思维习惯,使得非专业人士也能够轻松地从数据库中获取信息。这种交互方式的改进可以极大地提高工作效率,减少学习成本,并推动数据库的广泛应用。

通过自然语言查询数据库的意义在于适应知识存储方式的变革,提高工作效率和便捷性,推动数据库技术的发展和应用。同时,语义解析技术的发展和应用也为实现这一目标提供了有力的支持。

语义解析和大模型的关系

大规模预训练语言模型和语义解析技术就像是人工智能领域的两位超级英雄,它们各自有着独特的超能力,但当它们联手时,就能创造出更强大的力量。

大规模预训练语言模型,比如我们熟知的ChatGPT,就像是一个语言天才。它经过大量的训练,能够理解和生成各种复杂的文本。举个例子,如果你让它写一篇关于“环保知识”的文章,它能够轻松地为你生成一篇结构清晰、内容丰富的文稿。或者,当你感到孤单时,它可以陪你聊天,为你提供情感上的支持。它的优势在于能够处理各种自然语言任务,就像一个全能选手一样。

然而,即使是全能选手也有它的局限性。当面对大量的结构化数据时,比如数据库里的信息,大规模预训练语言模型就显得有些力不从心了。例如,假设你是一家电商公司的客服机器人,用户想查询“过去一年内,销量最高的商品是什么?”。对于大模型而言,要回答此问题需要将整个销售数据库作为输入,这显然是不现实的。此时,形式化语言作为与结构化数据交互的媒介变得尤为重要。通过语义解析技术,我们可以将用户的自然语言查询转化为SQL查询语句:“SELECT Product FROM SalesData ORDER BY QuantitySold DESC LIMIT 1”,从而直接对接数据库,获取所需信息。

此外,大模型的输出内容具有不可预测性。由于是生成式的模型,它们可能会在某些情况下产生不合理或不准确的内容。比如,当用户询问“太阳是从哪个方向升起的?”时,大模型可能会因为训练数据中的某些偏差或模型本身的随机性,产生“太阳从西方升起”的错误回答。而基于语义解析的方法由于依赖准确的结构化数据库(例如知识图谱中保存着太阳的一个属性是从东方升起),因此更倾向于给出确定的、基于知识的答案。

还有另一个例子是关于知识更新的。假设你是一位科研人员,昨天有一个重大的科学发现被公布,而今天你就想了解这个发现的具体内容。对于大模型来说,除非这个发现已经被加入到其训练数据中并重新训练了模型,否则它无法提供这一最新信息。但对于基于语义解析和数据库的方法,只需简单地更新数据库即可。这就像是你直接查阅最新的科研论文一样方便。

这时候,就需要另一位超级英雄——语义解析技术闪亮登场了。语义解析技术就像是一个精准的翻译官,它能够将自然语言转化为计算机能够理解的语言。比如,在智能家居系统中,你可以通过语音命令控制家里的灯光、音乐等设备。当你说“打开客厅的灯”时,语义解析技术会将你的语音转化为计算机能够理解的指令,从而实现灯光的控制。它的优势在于能够精确理解用户的意图,并提供可靠的答案。

这两位超级英雄的结合,就像是一场完美的舞蹈。大规模预训练语言模型提供了强大的语言生成和理解能力,而语义解析技术则为特定任务提供了精确的支持。它们的互补关系使得人工智能能够更好地理解和回应人类的需求,为我们的生活带来更多的便利和乐趣。

所以,不要小看传统的语义解析技术哦!在这个大模型的时代,它依然发挥着不可替代的作用。只有当我们充分利用两者的优势,才能实现更高效、更智能的自然语言处理体验!

延伸阅读

请添加图片描述

语义解析:自然语言生成SQL与知识图谱问答实战

易显维,宁星星 著

领域专家联袂推荐

语义解析大赛获奖者撰写

满足工业级应用安全、精准需求

弥合大模型的不足

推荐语:

语义解析技术能解决大模型无法保证输出的形式语言可靠性和输出答案真实性的问题。本书由语义解析大赛获奖者撰写,通过本书的学习,读者可以了解NLP的相关技术,掌握自然语言生成SQL和知识图谱问答的实现方法。

剖析语义解析技术原理与实践,涵盖机器翻译、模板填充、强化学习、GNN、中间表达五大技术方向,并随书提供案例代码。
请添加图片描述


文末送书啦,欢迎来到洁洁送书第十四期
送书规则:
1.上方文章点赞收藏评论,任意评论留言都可以参与抽奖“ ,每人最多评论三次。
2.随机抽取评论区小伙伴(3-4位)免费送出!!!
3.等不及的小伙伴也可以自行前往官网(京东)购买:链接


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/307707.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

k8s的node亲和性和pod亲和性和反亲和性 污点 cordon drain

node亲和性和pod亲和性和反亲和性 污点 cordon drain 集群调度: schedule的调度算法 预算策略 过滤出合适的节点 优先策略 选择部署的节点 nodeName:硬匹配,不走调度策略,node01 nodeSelector:根据节点的标签选择,会走调度的算法 只…

Mac M1 Parallels CentOS7.9 Deploy Docker + Rancher + K8S(HA+More Master)

一、准备虚拟机资源 虚拟机清单 机器名称IP地址角色rancher10.211.55.200管理K8S集群k8svip10.211.55.199K8S VIPmaster0110.211.55.201K8S集群主节点master0210.211.55.202K8S集群主节点master0310.211.55.203K8S集群主节点node0110.211.55.211K8S集群从节点node0210.211.55…

ChatGPT扩展系列之网易数帆ChatBI

在当今数字化快速发展的时代,数据已经成为业务经营与管理决策的核心驱要素。无论是跨国大企业还是新兴创业公司,正确、迅速地洞察数据已经变得至关重要。然而,传统的BI工具往往对用户有一定的技术门槛,需要熟练的操作技能和复杂的查询语句,这使得大部分的企业员工难以深入…

Hadoop分布式文件系统(二)

目录 一、Hadoop 1、文件系统 1.1、文件系统定义 1.2、传统常见的文件系统 1.3、文件系统中的重要概念 1.4、海量数据存储遇到的问题 1.5、分布式存储系统的核心属性及功能含义 2、HDFS 2.1、HDFS简介 2.2、HDFS设计目标 2.3、HDFS应用场景 2.4、HDFS重要特性 2.4…

C++与Typescript的区别

目录 一、C类模板和函数模板 1.类模板 2.函数模板 二,Typescript 的泛型声明 1.泛型函数 2.泛型类 为什么C和Typescript语言中主张模板和泛型 一、C类模板和函数模板 在C中,类模板和函数模板允许你为多种数据类型编写通用的代码。这就像每个人都有…

PSoc62™开发板之PWM呼吸灯

实验目的 利用PWM动态调节输出功率达到控制LED呼吸变化的效果 实验准备 PSoc62™开发板(开发板已经板载LED) 板载资源 板载有多少pwm 创建工程例程,在libraries/HAL_Drivers/drv_pwm.h中查看BSP支持的pwm数量及对应的GPIO,可…

自动修复vcruntime140.dll丢失的解决办法,快速解决dll文件问题

在使用电脑时也会有不少用户都遇到vcruntime140.dll丢失的情况,那么有什么办法可以解决vcruntime140.dll丢失呢?今天将给大家分享一些关于vcruntime140.dll丢失的解决办法,从自动修复和手动修复两个方向给大家分析希望能够帮助到大家。 一.vc…

基于 Validator 类实现 ParamValidator,用于校验函数参数

目录 一、前置说明1、总体目录2、相关回顾3、本节目标 二、操作步骤1、项目目录2、代码实现3、测试代码4、日志输出 三、后置说明1、要点小结2、下节准备 一、前置说明 1、总体目录 《 pyparamvalidate 参数校验器,从编码到发布全过程》 2、相关回顾 使用 TypeV…

uniapp微信小程序投票系统实战 (SpringBoot2+vue3.2+element plus ) -投票创建后端实现

锋哥原创的uniapp微信小程序投票系统实战: uniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )_哔哩哔哩_bilibiliuniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )共计21条视频…

系列四十六、idea中安装Tomcat7插件

一、idea中安装Tomcat7插件 1.1、描述 学习SpringMVC开发时,代码写完之后,一般会配置一个外置的Tomcat用于启动容器,其实还可以通过插件的方式进行启动,这样就不用再配置外部的Tomcat了,具体怎么配置的呢?…

Spring Cloud + Vue前后端分离-第11章 用户管理与登录

源代码在GitHub - 629y/course: Spring Cloud Vue前后端分离-在线课程 Spring Cloud Vue前后端分离-第11章 用户管理与登录 11-1 增加用户管理功能 用户表设计与基本代码生成 1.用户管理与登录:用户表设计与基本代码生成 all.sql generatorConfig.xml Server…

网络编程套接字(Socket)

文章目录 1 重点知识2 预备知识2.1 理解源IP地址和目的IP地址2.2 认识端口号2.3 理解 "端口号" 和 "进程ID"2.4 理解源端口号和目的端口号2.5 认识TCP协议2.6 认识UDP协议2.7 网络字节序 3 socket编程接口3.1 socket 常见API3.2 sockaddr结构 4 简单的UDP网…

安卓(雷电)模拟器清除屏幕密码

1、设置磁盘可写 启动模拟器,然后在模拟器的设置界面,设置磁盘共享为可写入,重启模拟器,如下图: 2、找到模拟器目录 返回桌面,右键模拟器图标,打开文件所在目录,如下图&#xff1a…

应用在植物生长照明中的LED照明灯珠

植物照明是指利用LED植物照明灯来促进植物生长。植物照明一般采用LED植物生长灯,是一种以LED(发光二极管)为发光体,满足植物光合作用所需光照条件的人造光源。LED植物生长灯对植物的生长有很大的好处,能促进壮根、助长…

IPV6学习记录

IPV6的意义 从广义上来看IPV6协议包含的内容很多: IPV6地址的生成与分配 IPV6的报头的功能内容 IPV4网络兼容IPV6的方案 ICMPv6的功能(融合了arp和IGMP功能) IPV6的路由方式 ipv6的诞生除了由于ipv4的地址枯竭外,很大程度上也是因为ipv4多年的发展产生了很多…

Redis 内存淘汰策略有哪些?过期数据如何删除?

Redis 在面试中出现的概率非常大,毕竟后端项目如果用到分布式缓存的话,一般用的都是 Redis。目前,还没有出现一个能够取代 Redis 的分布式缓存解决方案。 这篇文章中,我会分享几道 Redis 内存管理相关的问题,都很常见…

2023年全国职业院校技能大赛(高职组)“云计算应用”赛项赛卷⑤

2023年全国职业院校技能大赛(高职组) “云计算应用”赛项赛卷5 目录 需要竞赛软件包环境以及备赛资源可私信博主!!! 2023年全国职业院校技能大赛(高职组) “云计算应用”赛项赛卷5 模块一 …

【中国联通协办】第六届下一代数据驱动网络国际学术会议(NGDN 2024)

第六届下一代数据驱动网络国际学术会议(NGDN 2024) The Sixth International Conference on Next Generation Data-driven Networks 基于前几届在英国埃克塞特 (ISPA 2020) 、中国沈阳 (TrustCom 2021) 和中国武汉(IEEETrustCom-2022)成功举办的经验&a…

TF-IDF(Term Frequency-Inverse Document Frequency)算法详解

目录 概述 术语解释 词频(Term Frequency) 文档频率(Document Frequency) 倒排文档频率(Inverse Document Frequency) 计算(Computation) 代码语法 代码展示 安装相关包 测…

ChatGPT知名开源项目有哪些

ChatGPT-Next-Web:基于ChatGPT API的私有化部署网页聊天系统 主要功能: 只需在 1 分钟内即可在 Vercel 上一键免费部署,支持私有服务器快速部署,支持使用私有域名支持ChatGPT3.5、4等常见模型Linux/Windows/MacOS 上的紧凑型客户…