系统存储架构升级分享 | 京东云技术团队

一、业务背景

系统业务功能:系统内部进行数据处理及整合, 对外部系统提供结果数据的初始化(写)及查询数据结果服务。

系统网络架构:

  • 部署架构对切量上线的影响 - 内部管理系统上线对其他系统的读业务无影响
  • 分布式缓存可进行单独扩容, 与存储及查询功能升级无关
  • 通过缓存层的隔离, 系统扩展期间外部系统可保持不变, 只对内部管理系统升级
  • 内部系统上线/验证时, 除了业务场景1相关的初始化操作, 仍可提供读服务,降低上线影响

二、本次升级整体实施方案:

整体实施方案图例:

(一)、设立目标

商品全量渠道化-切量计划: (总量为当前10倍):

目前:

当前数据库常用表均已超过5000W, 其中部分结果表达6000W, 已达到MYSQL数据库表容量峰值, 对于全切量无法支持;

目标:

最高支持9亿: 根据切量计划, 全切量后系统约为6.7亿, 保留1/4的冗余, 取8.375亿; 向上取整9亿, 此值冗余量较大, 可满足未来5年数据支持

时间目标: 8月初方案设定, 8月17~8.22上线及验证, 8.24切量计划开始

(二)、当前系统现状

1、资源使用

•当前部署结构

——机房分布,Mysql: 1主4从(机房A 1主, 3从; 机房B只读从)

——机房分布,Doris: 32C, 63个节点, 3副本

•当前应用容器(docker)数量,db最大连接数

——应用容器数量: 62 (Web分组: 25, Worker分组: 31, MQ分组: 6)

——db最大连接数100 (每个容器配置)

•当前业务是否读写分离,读写比例情况

——无读写分离

•各业务场景下,是否可容忍主从延迟?可容忍的延迟时长是多少

——目前业务人员修改操作多数为同步操作, 修改完成后返回操作结果到前端, 从业务方操作+查询结果来说, 无法空忍延迟

——后台任务场景, 对于中间数据处理, 可以容忍主从延迟

•产品层面,系统出现瓶颈压力时,是否接受限流?是否接受数据延迟展示?

——对外服务接口本次不涉及开发, 服务接口不受影响;业务页面访问量少,可接受短时间内的延迟

•团队是否有ES使用经验

——部分了解, 未在项目中使用

2、数据库内部使用情况

使用通用性的盘点框架对系统进行全面性现状梳理

表内空间, 业务场景等信息 (部分)

| 表名 | 当前表记录数 (单位:万) | 最大支持条数 (单位:万) | 表字段数 | 是否可拆分出分片键 | 分片键字段 | 是否存在不带分片字段的SQL | 是否有跨表查询场景 | 数据记录读写比 | 是否存在写后立即查询 | 使用场景 | 数据是否 可截转 | 可接受的截转时长 | 切量后预估量 | 分布式DB | ES 判断条件:是否有复杂查询 | ES直接双写 判断条件: 写后立即查询 |
| 审批流表 | 3.5KW | 4KW | 43 | 有 | sku | 存在 | 存在 | 1000/1 | 存在写后用户手动再查询操作 | 1、页面创建审批流 2、页面查询审批流 3、页面数据置失效 4、审批平台回调修改 | 否 | | +3亿 | ✅ | ✅ | UI修改后需重新点击"查询"按钮; |
| 审批流细目表 (历史数据已清理) | 800W | 4KW | 20 | 有 | 增加sku | 无 | 存在 | 1000/1 | 存在写后用户手动再查询操作 | 1、刷新审批流(删除+增加) 2、查询审核中流程(任务) | 审批通过可转冷备 | | 转冷备 | ✅ | ✅ | |
| 业务数据表1 | 3.3KW | 4KW | 15 | 有 | sku | 无 | 无 | 100/1 | | 1、审批流通过后, 创建 2、数据失效, 删除操作 3、后台工具: 同步缓存(存在复杂+分页查询) | 否 | | +3亿 | ✅ | ❌ | ❌ |
| 业务数据表2 | 5.9KW | 4KW | 16 | 有 | sku | 存在 (新增后异常按id删除) | 无 | 1000/1 | | 1、业务查询/导出维度1数据 2、业务查询维度2数据2 3、后台工具: 同步缓存 | 否 | | +5亿 | ✅ | 同步大数据推送数据到缓存, 使用creator字段查询; 多个SKU分页查询 | ❌ |
| 支持数据表(大数据平台计算后推送) | 1.2KW | 4KW | 12 | 有 | item_sku_id | 无 | 无 | 5/1 | | 1、运维工具: 增加/删除记录 2、清理历史数据(任务) 3、数据查询(显示使用) 4、计算 5、大数据推送数据 | 按日期推送, 目前保留3天 | 历史数据无用 doris? | 一天3~4KW | ✅ | 删除数据dt | ❌ |
| … | | | | | | | | | | | | | | | | |

(三)、技术方案选型

系统特点:单表高并发写、复杂读

1、存储选型:

结论:

内部分布式DB: 由单分片拓展到多分片, 解决海量数据存储及简单查询

ES: 新引入, 实现复杂查询(分词查询)及全局排序

redis: 保留, 需扩容

Doris: 保留, 容量增大

复杂查询(原因: 前端业务访问存在多表关联场景(2张千万级别表关联查询), 随着表容量变大, 关联查询性能下降, 已无法满足业务高效需求)

复杂查询决策因素:

| | | 分布式DB(mysql) | es | doris | TiDB |
| 决策指标 | 产品定位 | 数据库 (OLTP) | 搜索引擎 | 数据库 (OLAP) | 数据库(OLTP+80%OLAP) |
| 优势 | 1、高并发、高吞吐量事务处理 2、稳定性 3、数据实时(写后即读) | 1、全文索引 2、复杂结构化查询 | 高并发查询分析 | 1、兼具事务处理+数据分析 2、自动拓展 3、数据实时(写后即读) |
| 劣势 | 1、大量数据分析 2、手动拓展 | 1、事务处理 2、实时(写后即读) | 1、事务处理 2、实时(写后即读) | 高并发、高吞吐量事务处理 |
| 可靠性 | 高(多机房) | 高(多机房) | 低(共享集群) | 低(单机房) |
| 拓展性 | 库维度:平台管理 表维度:应用控制 | 平台管理 | | 库维度:平台管理 表维度:应用控制 |
| 数据一致性 | 最终一致性 | 最终一致性 | | 强一致性 |
| 运维支持 | DBA | 分公司运维 | 无专业运维团队 | 分公司DBA |
| 总结 | 复杂业务查询慢 无法支持大数据量跨表查询、多维度复杂查询及全局排序 单表使用分片字段查询性能快 | 复杂业务查询性能高 | 部署结构为共享集群,(特别是)写性能受外部影响大 | 部署架构为单机房,无法满足0级系统可靠性要求 |
| | 架构目标 | | | | |
| 结论 | 海量存储及高并发写 | ✅ 大数据量存储,基于分库字段单表查询性能高, 单库事务处理 | ✖️ 高并发下的事务处理 | ✖️ 查询受写入/更新操作影响大 | ✖️ 高并发下的事务处理 可靠性 |
| 复杂度查询 | ✖️ 性能差, 可能会存在跨库查询 | ✅ 可靠性高 大数据量下的复杂业务查询 | ✖️ 查询受写入/更新操作影响大 | ✖️ 可靠性 |

2、数据同步方案

A-准实时同步方案:

方案描述:使用DRC平台配置化完成分布式DB到ES的准实时数据同步 (注: DRC为公司内部通用数据同步平台, 可在多个数据源之间进行数据同步)

优势:简单无序代码开发 劣势:可能存在业务写后即查场景,数据不一致风险

B-双写强一致方案:

方案描述:双写分布式DB与ES, 保证数据一致性

优势:保障数据写即读场景一致性 劣势:代码开发成本高

数据同步方案选择建议:

先选择A-准实时同步方案 -> 线上验证是否满足业务操作体验-> 再选择是否实施B-双写强一致方案

数据同步难点及解决方案:

问题:

•双表联合查询场景无法直接使用DRC平台同步, 需另开发相应的同步模块jar包, 嵌入DRC任务, 或放弃使用DRC, 直接使用代码同步, 都存在开发时间长问题

•ES索引空间占用多, 冗余记录条数多, , 查询结果需排重, 查询复杂

难点:流程表与流程细目节点表涉及联合查询, 两表都存在单表增删改的操作; 导致同步到ES的数据模型复杂、同步困难

解决方案:(数据库表增加冗余字段, 冗余字段专用于ES查询)

在DB的流程表增加待审人员, 已审人员字段, 字段的值使用空格分隔, 使用ES的分词功能, 同时ES可直接使用DRC工具直接同步此表数据, 减少同步的开发时间

方案成本: 增加/修改流程细目时同步修改流程表新增字段; 开发刷新历史数据工具

(四)、分阶段开发及上线实施步骤

1、系统业务改造-表字段增加(8月10日)

1) 业务表新增分库字段

部分业务表缺少分库字段,无法直接分片。针对业务表新增sku分片字段, 同时对现有逻辑改造增加SKU条件,以提升查询效率;

2) ES相关查询冗余字段的增加 (刷数据)

2、分布式DB分库数据同步+验证(8月11日)

1) 完成分布式DB分片库+ ES初始化;

2) 配置DRC完成原单库到分布式DB分片库的全量+增量数据同步;

3) 配置DRC完成分布式DB分片库到ES的全量+增量数据同步;

4) 通过检验工具,定期比对分布式DB单片、分布式DB分片及ES间的数据一致性。

3、读流量切换+验证 (8月17日)

1) 新增AOP切面, 通过DUCC配置(erp白名单, 全量读, 结果对比等维度配置),将读请求逐步切量到新应用集群

2) 待产品、业务侧完成验证后,切换全部读流量至新应用集群(注: 新应用集群使用数据库只读帐号)

4、写流量切换(8.21)

  1. 上线前周知业务方及上下游系统,告知上线时间段及预估时长,减少业务影响

  2. 新增一个静态页面提示用户系统升级中不可用,切换前端域名至静态页面, 避免用户操作

  3. 停止原系统分组,确保原单库不再存有写流量,同时协调DBA对原库执行禁写(关闭worker, 暂停MQ消费)

  4. 等待并确保原库数据均同步至目的库后,再次通过手动+自动方式校验新老两个数据库的数据一致性

  5. 新系统分组切换为读写帐号, 进行部署

  6. 研发及测试人员对新系统分组功能使用测试商品进行功能验证, 无问题后交由业务人员验证(切换静态运维页面)

  7. 启动worker及接入MQ

5、上线后效果

上线后系统运行正常, 8.23至今已结转商品 2.6亿; 目前系统支持商品场维度数据3.16亿; 最大DB表数据已有2.84亿; ES数据4356W;

前后对比: erp:xxx; 此erp帐号数据29w 原查询9s,新查询1s;

四、总结

好的建议:

•全面、清晰的系统现状盘点:可以降低复杂度、提高质量

•清晰的上线计划:指导人员合理分工、缩短上线时间、降低上线难度

未解决问题:

目前分布式DB分布式事务支持比较弱, 无法保证跨分库时多条记录在一个事务中修改的正确性, 需要提交后进行读取后再验证确保数据正确保存

业务人员名下商品数据百万时, 查询时间仍然效长, 查询性能将持续优化

作者:京东零售 王凯

来源:京东云开发者社区 转载请注明来源

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/306507.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Open CASCADE学习|非线性方程组

非线性方程组是一组包含非线性数学表达式的方程,即方程中含有未知数的非线性项。解这类方程组通常比解线性方程组更为复杂和困难。 非线性方程组在很多领域都有应用,例如物理学、工程学、经济学等。解决非线性方程组的方法有很多种,包括数值…

ASM磁盘管理:从初始化参数到自动化管理的全面解析

文章目录 一、引言二、ASM初始化参数三、ASM三大系统权限四、ASM实例的启停1.Oracle ASM的启停可以通过两种方式进行2.查看集群中的资源状态3.配置 ASM资源随着系统启动而启动4.配置数据库实例随着ASM启动而启动 五、数据库实例与ASM的交互六、 启动策略详解七、 ASM后台进程八…

【前端】前后端的网络通信基础操作(原生ajax, axios, fetch)

概述 前后端网络请求工具 原生ajaxfetch apiaxios GET和POST请求 get只能发纯文本 post可以发不同类型的数据,要设置请求头,需要告诉服务器一些额外信息 测试服务器地址 有一些公共的测试 API 可供学习和测试用途。这些 API 允许你发送 HTTP 请求…

在 Flutter 中创建圆角图像和圆形图像有多少种方法?

使用 Container 、 ClipRRect 、 CircleAvatar 、 Card 和 PhysicalModel 实现具有视觉吸引力的图像效果。 在 Flutter 应用 UI 设计中,圆形图像是常见的视觉元素。本博客探讨了使用不同技术实现圆形图像效果的各种方法。无论是使用网络图像、本地文件还是资源&…

CSS渐变透明

文章目录 一、前言1.1、MDN 二、实现2.1、源码2.2、线上源码 三、最后 一、前言 使用场景:在做两个元素的连接处的UI适配时,图片的颜色不能保证一定跟背景颜色或者是主色调保持一致时,会显得比较突兀。 1.1、MDN MDN的文档,点击【…

【数据库系统概论】期末复习1

试述数据、数据库、数据库系统、数据库管理系统的概念。试述文件系统与数据库系统的区别和联系。试述数据库系统的特点。数据库管理系统的主要功能有哪些?试述数据库系统三级模式结构,这种结构的优点是什么?什么叫数据与程序的物理独立性&…

高光谱分类论文解读分享之基于多模态融合Transformer的遥感图像分类方法

IEEE TGRS 2023:基于多模态融合Transformer的遥感图像分类方法 题目 Multimodal Fusion Transformer for Remote Sensing Image Classification 作者 Swalpa Kumar Roy , Student Member, IEEE, Ankur Deria , Danfeng Hong , Senior Member, IEEE, Behnood Ras…

【办公类-19-01】20240108图书统计登记表制作(23个班级)EXCEL复制表格并合并表格

背景需求: 制作一个EXCEL模板,每个班级的班主任统计 班级图书量(一个孩子10本,最多35个孩子350本) EXCEL模板 1.0版本: 将这个模板制作N份——每班一份 项目:班级图书统计表 核心:一个EXCEL模板批量生成…

电子学会C/C++编程等级考试2020年09月(一级)真题解析

C/C++编程(1~8级)全部真题・点这里 第1题:输出整数 输入四个整数,把输入的第三、第四个整数输出。 时间限制:3000 内存限制:65536 输入 只有一行,共四个整数,整数之间由一个空格分隔。整数是32位有符号整数。 输出 只有一行,二个整数,即输入的第三、第四个整数,以一…

k8s-存储 11

一、configmapu存储 首先,确保集群正常,节点都处于就绪状态 Configmap用于保存配置数据,以键值对形式存储。configMap资源提供了向 Pod 注入配置数据的方法,旨在让镜像和配置文件解耦,以便实现镜像的可移植性和可复用…

Linux 网络设置与基础服务

一 配置网络设置 主机名 hostname IP地址/netmask ifconfig ; ip a 路由:默认网关 route -n DNS服务器 cat /etc/resolv.conf 网络连接状态 ss netstat 域名解析 ns…

【OSG案例详细分析与讲解】之二:【着色文件转换为字符数组】

文章目录 一、【着色文件转换为字符数组】前言 二、【着色文件转换为字符数组】Shader转换 三、【着色文件转换为字符数组】转换函数 1.转换函数 2.字符替换函数 四、【着色文件转换为字符数组】示例 1.GLSL2Cpp.cpp文件: 2.Qt pro文件: 五、【着色文件转…

Spark与Cassandra的集成与数据存储

Apache Spark和Apache Cassandra是大数据领域中两个重要的工具,用于数据处理和分布式数据存储。本文将深入探讨如何在Spark中集成Cassandra,并演示如何将Spark数据存储到Cassandra中。将提供丰富的示例代码,以帮助大家更好地理解这一集成过程…

vue2源码解析之第一步(对数据进行劫持)

###环境搭建 第一步 创建项目: npm init -y 第二步 安装对应的插件: npm i rollup rollup-plugin-babel babel/core babel/preset-env --save-dev 第三步 全局下创建rollup配置文件 rollup.config.js import babel from rollup-plug…

mysql的导入导出

mysql的导入导出 1.使用navicat导入导出1.1导入1.2导出 2.使用.mysqldump命令导入导出2.1导出表结构和数据2.2导出表结构2.3导入 3..LOAD DATA INFILE命令导入导出3.1在mysqlini 文件的[mysqld] 代码下增加 secure_file_privE:/TEST 再重启 mysql3.2导出3.3导入 4.远程备份导入…

Ubuntu20二进制方式安装nginx

文章目录 1.下载nginx安装包2.安装nginx3.安装出现的问题及解决方案错误1:错误2:错误3: 4.常用命令5.知识扩展: 1.下载nginx安装包 nginx官网:http://nginx.org/en/download.html 选择稳定的nginx版本下载。 2.安装ngi…

[redis] redis主从复制,哨兵模式和集群

一、redis的高可用 1.1 redis高可用的概念 在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。 高可用的计算公式是1-(宕机时间)/(宕机时…

WPS或word中英文字母自动调整大小写,取消自动首字母大写,全部英文单词首字母大小写变换方法

提示:写英文论文时,如何实现英文字母大小写的自动切换,不用再傻傻的一个字母一个字母的编辑了,一篇文章搞定WPS与Word中字母大小写切换 文章目录 一、WPS英文单词大小写自动修改与首字母大写调整英文字母全部由大写变成小写 或 小…

Python进阶之元类

Python进阶之元类 目录 什么是元类? 元类的调用流程 根据类自定义元类 __new__方法以及参数 ----------cls ----------name ----------bases ----------attrs __call__方法 生成对象的完整代码 什么是元类? 在python面向对象中,我们知道所有…

【AI】Pytorch 系列:预训练模型使用

1. 模型下载 import re import os import glob import torch from torch.hub import download_url_to_file from torch.hub import urlparse import torchvision.models as modelsdef download_