大创项目推荐 深度学习实现行人重识别 - python opencv yolo Reid

文章目录

  • 0 前言
  • 1 课题背景
  • 2 效果展示
  • 3 行人检测
  • 4 行人重识别
  • 5 其他工具
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的行人重识别算法研究与实现 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

行人重识别是计算机视觉领域的研究热点之一,旨在研究不重叠的多个摄像区域间对于特定行人的匹配准确率,是图像检索的子问题,多应用于安防和刑侦。我国实现的视频监控“天网”,就是通过在人流量大的公共区域密集安装监控设备来实现“平安城市”建设。尽管部分摄像头可转动,但仍存在监控盲区和死角等局限性问题,Re-
ID技术弥补了摄像设备的视觉局限性。然而,在实际应用中异时异地相同行人的图像数据,在姿势、前景背景、光线视角以及成像分辨率等方面差异大,使得Re-
ID研究具有挑战性。
行人重识别展示

2 效果展示

手动标记在这里插入图片描述
检测结果
在这里插入图片描述

3 行人检测

本项目实现了基于 yolo框架的行人目标检测算法,并将该目标检测算法应用在图像和视频的识别检测之中。

简介
下图所示为 YOLOv5 的网络结构图,分为输入端,Backbone,Neck 和 Prediction 四个部分。其中,
输入端包括 Mosaic 数据增强、自适应图片缩放、自适应锚框计算,Backbone 包括 Focus 结构、CSP
结 构,Neck 包 括 FPN+PAN 结 构,Prediction 包 括GIOU_Loss 结构。
在这里插入图片描述
Head输出层
输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:


①==>40×40×255

②==>20×20×255

③==>10×10×255

在这里插入图片描述
相关代码

class Yolo(object):
    def __init__(self, weights_file, verbose=True):
        self.verbose = verbose
        # detection params
        self.S = 7  # cell size
        self.B = 2  # boxes_per_cell
        self.classes = ["aeroplane", "bicycle", "bird", "boat", "bottle",
                        "bus", "car", "cat", "chair", "cow", "diningtable",
                        "dog", "horse", "motorbike", "person", "pottedplant",
                        "sheep", "sofa", "train","tvmonitor"]
        self.C = len(self.classes) # number of classes
        # offset for box center (top left point of each cell)
        self.x_offset = np.transpose(np.reshape(np.array([np.arange(self.S)]*self.S*self.B),
                                              [self.B, self.S, self.S]), [1, 2, 0])
        self.y_offset = np.transpose(self.x_offset, [1, 0, 2])

        self.threshold = 0.2  # confidence scores threhold
        self.iou_threshold = 0.4
        #  the maximum number of boxes to be selected by non max suppression
        self.max_output_size = 10

        self.sess = tf.Session()
        self._build_net()
        self._build_detector()
        self._load_weights(weights_file)

4 行人重识别

简介
行人重识别(Person re-identification)也称行人再识别, 被广泛认为是一个图像检索的子问题,
是利用计算机视觉技术判断图像或者视频中是否存在特定行人的技术,
即给定一个监控行人图像检索跨设备下的该行人图像。行人重识别技术可以弥补目前固定摄像头的视觉局限, 并可与行人检测、行人跟踪技术相结合,
应用于视频监控、智能安防等领域。
在这里插入图片描述行人重识别系统

行人检测
主要用于检测视频中出现的人像,作为一个行人重识别首先要做到的就是能够将图片中的行人识别出来,称为Gallery输入。当然,在学术研究领域,行人重识别主要还是关注的下面这个部分,而对于行人检测这部分多选择采用目前已经设计好的框架。
行人重识别
这一部分就是对上面的Probe以及Gallery进行特征提取,当然提取的方式可以是手工提取,也可以使用卷积神经网络进行提取。然后呢,就是对图片的相似度进行度量,根据相似图进行排序。
针对行人重识别系统从细节来说,包括下面几个部分:

  • 特征提取(feature Extraction):学习能够应对在不同摄像头下行人变化的特征。
  • 度量学习(Metric Learning) :将学习到的特征映射到新的空间使相同的人更近不同的人更远。
  • 图像检索(Matching):根据图片特征之间的距离进行排序,返回检索结果

Reid提取特征
行人重识别和人脸识别是类似的,刚开始接触的可以认为就是人脸换成行人的识别。

  1. 截取需要识别的行人底库
    在这里插入图片描述

  2. 保存行人特征,方便进行特征比对

相关代码

# features:reid模型输出512dim特征
person_cossim = cosine_similarity(features, self.query_feat)
max_idx = np.argmax(person_cossim, axis=1)
maximum = np.max(person_cossim, axis=1)
max_idx[maximum < 0.6] = -1
score = maximum
reid_results = max_idx
draw_person(ori_img, xy, reid_results, self.names)  # draw_person name

5 其他工具

OpenCV
是一个跨平台的计算机视觉处理开源软件库,是由Intel公司俄罗斯团队发起并参与和维护,支持与计算机视觉和机器学习相关的众多算法。
在这里插入图片描述
本项目中利用opencv进行相关标记工作,相关代码:

import cv2
import numpy as np

def cv_imread(filePath):
    cv_img = cv2.imdecode(np.fromfile(filePath,dtype=np.uint8), -1)
    return cv_img

# 需要可视化的图片地址
img_path = ‘’
# 对应图片的检测结果
detection_result = []

# 如果路径中包含中文,则需要用函数cv_imread的方式来读取,否则会报错
img = cv_imread(img_path)
 # 可视化
for bb in detection_result:
    # bb的格式为:[xmin, ymin, xmax, ymax]
    cv2.rectangle(img, (int(bb[0]), int(bb[1])),
                        (int(bb[2]), int(bb[3])),
                         (255, 0, 0), 2)

cv2.imshow('1', img)
cv2.waitKey(0)

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/305812.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

python接口自动化测试框架介绍

之前在项目中搞了一套jmeter jenkins git ant接口自动化测试框架&#xff0c;在项目中运行了大半年了&#xff0c;效果还不错&#xff0c; 最近搞了一套requests unittest ddt pymysql BeautifulReport的接口自动化测试框架&#xff0c; 测试用例在yaml文件中&#xff0c…

【C语言】time.h——主要函数介绍(附有几个小项目)

time.h是C标准函数库中获取时间与日期、对时间与日期数据操作及格式化的头文件。返回值类型 size_t&#xff1a;适合保存sizeof的结果&#xff0c;类型为unsigned int&#xff08;%u&#xff09;clock_t&#xff1a;适合存储处理器时间的类型&#xff0c;一般为unsigned long&…

vue3+vite+tailwind.css无效问题,兄弟们我来解救你们了

1.按照文档配置&#xff0c;原模原样写&#xff0c;最终发现没效果。。。。。 那是应为vite.config.ts没有配置&#xff0c; 保你100%有效果&#xff01;

一次性讲清楚INNER JOIN、LEFT JOIN、RIGHT JOIN的区别和用法详解

文章目录 Join查询原理Nested-Loop JoinINNER JOIN、LEFT JOIN、RIGHT JOIN的区别INNER JOIN操作LEFT JOIN操作RIGHT JOIN操作总结 参考 Join查询原理 查询原理&#xff1a;MySQL内部采用了一种叫做 Nested Loop Join(嵌套循环连接) 的算法。Nested Loop Join 实际上就是通过 …

力扣——C语言:合并两个有序数组

88. 合并两个有序数组 - 力扣&#xff08;LeetCode&#xff09; 这道题有多种方法可以解决 一、暴力求解 这种方法最简单&#xff0c;我们只需要把两个数组合在一起然后在冒泡排序就可以了 代码如下&#xff1a; void merge(int* nums1, int nums1Size, int m, int* nums2…

springboot——消息中间件

消息的概念 从广义角度来说&#xff0c;消息其实就是信息&#xff0c;但是和信息又有所不同。信息通常被定义为一组数据&#xff0c;而消息除了具有数据的特征之外&#xff0c;还有消息的来源与接收的概念。通常发送消息的一方称为消息的生产者&#xff0c;接收消息的一方称为…

OpenAI ChatGPT-4开发笔记2024-02:Chat之text generation之completions

API而已 大模型封装在库里&#xff0c;库放在服务器上&#xff0c;服务器放在微软的云上。我们能做的&#xff0c;仅仅是通过API这个小小的缝隙&#xff0c;窥探ai的奥妙。从程序员的角度而言&#xff0c;水平的高低&#xff0c;就体现在对openai的这几个api的理解程度上。 申…

Hyperledger Fabric 核心概念与组件

要理解超级账本 Fabric 的设计&#xff0c;首先要掌握其最基本的核心概念与组件&#xff0c;如节点、交易、排序、共识、通道等。 弄清楚这些核心组件的功能&#xff0c;就可以准确把握 Fabric 的底层运行原理&#xff0c;深入理解其在架构上的设计初衷。知其然&#xff0c;进…

RT-Thread 线程间同步 信号量

线程间同步 在多线程实时系统中&#xff0c;一项工作的完成往往可以通过多个线程协调的方式共同来完成。 例如一项工作中的两个线程&#xff1a;一个线程从传感器中接收数据并且将数据写到共享内存中&#xff0c;同时另一个线程周期性地从共享内存中读取数据并发送出去显示&a…

文件或目录损坏的磁盘修复方法

文件或目录损坏是一种常见的计算机问题&#xff0c;可能由多种原因导致&#xff0c;如磁盘故障、病毒或恶意软件攻击、文件系统错误等。这些损坏可能导致数据丢失或无法访问文件&#xff0c;因此及时修复至关重要。本文将深入探讨文件或目录损坏的原因&#xff0c;并提供相应的…

JAVA毕业设计118—基于Java+Springboot的宠物寄养管理系统(源代码+数据库)

毕设所有选题&#xff1a; https://blog.csdn.net/2303_76227485/article/details/131104075 基于JavaSpringboot的宠物寄养管理系统(源代码数据库)118 一、系统介绍 本系统分为管理员、用户两种角色 1、用户&#xff1a; 登陆、注册、密码修改、宠物寄养、寄养订单、宠物…

解决word图片格式错乱、回车图片不跟着换行的问题

解决word图片格式错乱、回车图片不跟着换行的问题 1.解决方法。 先设置为嵌入型 但是设置的话会出现下面的问题。图片显示不全。 进一步设置对应的行间距&#xff0c;原先设置的是固定值&#xff0c;需要改为1.5倍行距的形式&#xff0c;也就是说不能设置成固定值就可以。

SpringBoot学习(五)-Spring Security配置与应用

注&#xff1a;此为笔者学习狂神说SpringBoot的笔记&#xff0c;其中包含个人的笔记和理解&#xff0c;仅做学习笔记之用&#xff0c;更多详细资讯请出门左拐B站&#xff1a;狂神说!!! Spring Security Spring Security是一个基于Java的开源框架&#xff0c;用于在Java应用程…

ZGC垃圾收集器介绍

ZGC&#xff08;The Z Garbage Collector&#xff09;是JDK 11中推出的一款低延迟垃圾回收器&#xff0c;它的设计目标包括&#xff1a; 停顿时间不超过10ms&#xff1b;停顿时间不会随着堆的大小&#xff0c;或者活跃对象的大小而增加&#xff1b;支持8MB~4TB级别的堆&#x…

【数字图像处理】水平翻转、垂直翻转

图像翻转是常见的数字图像处理方式&#xff0c;分为水平翻转和垂直翻转。本文主要介绍 FPGA 实现图像翻转的基本思路&#xff0c;以及使用紫光同创 PGL22G 开发板实现数字图像水平翻转、垂直翻转的过程。 目录 1 水平翻转与垂直翻转 2 FPGA 布署与实现 2.1 功能与指标定义 …

【实用工具指南 三】CHAT-GPT4接入指南

好消息&#xff0c;CHAT-GPT4终于开放订阅了&#xff0c;聪明的人已经先用上了&#xff0c;先上个图。 但是去订阅的时候发现银行卡验证不通过&#xff0c;后来一查必须是老美的州才行&#xff0c;于是买了个美元虚拟卡 接下来就比较简单&#xff0c;直接找客服把GPT的充值界…

LabVIEW在高精度机器人视觉定位系统中的应用

在现代工业自动化中&#xff0c;精确的机器人视觉定位系统对于提高生产效率和产品质量至关重要。LabVIEW软件&#xff0c;以其卓越的图像处理和自动化控制功能&#xff0c;在这一领域发挥着重要作用。本案例将展示LabVIEW如何帮助开发和实现一个高精度的机器人视觉定位系统&…

令人绝望的固化和突破-2024-

这是继续写给自己求生之路的记录。 所有成熟稳定的行业都是相对固化的&#xff0c;上升通道及其严苛。 博客 我刚写博客的2015-2017这3年&#xff0c;其实还能带动一些学生&#xff0c;然后部分学生心中有火&#xff0c;眼里有光&#xff0c;也有信心自己做好&#xff0c;还有…

Java里的实用类

1.枚举 语法&#xff1a; public enum 变量名{ 值一&#xff0c;值二} 某个变量的取值范围只能是有限个数的值时&#xff0c;就可以把这个变量定义成枚举类型。 2…装箱&#xff08;boxing&#xff09; 和拆箱&#xff08;unboxing&#xff09; 装箱&#xff08;boxing&…

玩转硬件之玩改朗逸中控设备

这是一个有关一件被拆卸的朗逸中控设备的故事。这个设备已经闲置多年&#xff0c;但是它的命运发生了转变。它被改装成了一台收音机和MP3播放器。 这个设备曾经是一辆朗逸的中控屏幕&#xff0c;就是因为它没有倒车影像&#xff0c;它就被拆了下来&#xff0c;被扔在了一个角落…