竞赛保研 基于深度学习的人脸识别系统

前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的人脸识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

机器学习-人脸识别过程

基于传统图像处理和机器学习技术的人脸识别技术,其中的流程都是一样的。

机器学习-人脸识别系统都包括:

  • 人脸检测
  • 人脸对其
  • 人脸特征向量化
  • 人脸识别
    在这里插入图片描述

人脸检测

人脸检测用于确定人脸在图像中的大小和位置,即解决“人脸在哪里”的问题,把真正的人脸区域从图像中裁剪出来,便于后续的人脸特征分析和识别。下图是对一张图像的人脸检测结果:

在这里插入图片描述

人脸对其

同一个人在不同的图像序列中可能呈现出不同的姿态和表情,这种情况是不利于人脸识别的。

所以有必要将人脸图像都变换到一个统一的角度和姿态,这就是人脸对齐。

它的原理是找到人脸的若干个关键点(基准点,如眼角,鼻尖,嘴角等),然后利用这些对应的关键点通过相似变换(Similarity
Transform,旋转、缩放和平移)将人脸尽可能变换到标准人脸。

下图是一个典型的人脸图像对齐过程:
在这里插入图片描述
这幅图就更加直观了:
在这里插入图片描述

人脸特征向量化

这一步是将对齐后的人脸图像,组成一个特征向量,该特征向量用于描述这张人脸。

但由于,一幅人脸照片往往由比较多的像素构成,如果以每个像素作为1维特征,将得到一个维数非常高的特征向量, 计算将十分困难;而且这些像素之间通常具有相关性。

所以我们常常利用PCA技术对人脸描述向量进行降维处理,保留数据集中对方差贡献最大的人脸特征来达到简化数据集的目的

PCA人脸特征向量降维示例代码:

#coding:utf-8
from numpy import *
from numpy import linalg as la
import cv2
import os
 
def loadImageSet(add):
    FaceMat = mat(zeros((15,98*116)))
    j =0
    for i in os.listdir(add):
        if i.split('.')[1] == 'normal':
            try:
                img = cv2.imread(add+i,0)
            except:
                print 'load %s failed'%i
            FaceMat[j,:] = mat(img).flatten()
            j += 1
    return FaceMat
 
def ReconginitionVector(selecthr = 0.8):
    # step1: load the face image data ,get the matrix consists of all image
    FaceMat = loadImageSet('D:\python/face recongnition\YALE\YALE\unpadded/').T
    # step2: average the FaceMat
    avgImg = mean(FaceMat,1)
    # step3: calculate the difference of avgimg and all image data(FaceMat)
    diffTrain = FaceMat-avgImg
    #step4: calculate eigenvector of covariance matrix (because covariance matrix will cause memory error)
    eigvals,eigVects = linalg.eig(mat(diffTrain.T*diffTrain))
    eigSortIndex = argsort(-eigvals)
    for i in xrange(shape(FaceMat)[1]):
        if (eigvals[eigSortIndex[:i]]/eigvals.sum()).sum() >= selecthr:
            eigSortIndex = eigSortIndex[:i]
            break
    covVects = diffTrain * eigVects[:,eigSortIndex] # covVects is the eigenvector of covariance matrix
    # avgImg 是均值图像,covVects是协方差矩阵的特征向量,diffTrain是偏差矩阵
    return avgImg,covVects,diffTrain
 
def judgeFace(judgeImg,FaceVector,avgImg,diffTrain):
    diff = judgeImg.T - avgImg
    weiVec = FaceVector.T* diff
    res = 0
    resVal = inf
    for i in range(15):
        TrainVec = FaceVector.T*diffTrain[:,i]
        if  (array(weiVec-TrainVec)**2).sum() < resVal:
            res =  i
            resVal = (array(weiVec-TrainVec)**2).sum()
    return res+1
 
if __name__ == '__main__':
 
    avgImg,FaceVector,diffTrain = ReconginitionVector(selecthr = 0.9)
    nameList = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15']
    characteristic = ['centerlight','glasses','happy','leftlight','noglasses','rightlight','sad','sleepy','surprised','wink']
 
    for c in characteristic:
 
        count = 0
        for i in range(len(nameList)):
 
            # 这里的loadname就是我们要识别的未知人脸图,我们通过15张未知人脸找出的对应训练人脸进行对比来求出正确率
            loadname = 'D:\python/face recongnition\YALE\YALE\unpadded\subject'+nameList[i]+'.'+c+'.pgm'
            judgeImg = cv2.imread(loadname,0)
            if judgeFace(mat(judgeImg).flatten(),FaceVector,avgImg,diffTrain) == int(nameList[i]):
                count += 1
        print 'accuracy of %s is %f'%(c, float(count)/len(nameList))  # 求出正确率

人脸识别

这一步的人脸识别,其实是对上一步人脸向量进行分类,使用各种分类算法。

比如:贝叶斯分类器,决策树,SVM等机器学习方法。

从而达到识别人脸的目的。

这里分享一个svm训练的人脸识别模型:



    from __future__ import print_function
    
    from time import time
    import logging
    import matplotlib.pyplot as plt
    
    from sklearn.cross_validation import train_test_split
    from sklearn.datasets import fetch_lfw_people
    from sklearn.grid_search import GridSearchCV
    from sklearn.metrics import classification_report
    from sklearn.metrics import confusion_matrix
    from sklearn.decomposition import RandomizedPCA
    from sklearn.svm import SVC


    print(__doc__)
    
    # Display progress logs on stdout
    logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')


    ###############################################################################
    # Download the data, if not already on disk and load it as numpy arrays
    
    lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)
    
    # introspect the images arrays to find the shapes (for plotting)
    n_samples, h, w = lfw_people.images.shape
    
    # for machine learning we use the 2 data directly (as relative pixel
    # positions info is ignored by this model)
    X = lfw_people.data
    n_features = X.shape[1]
    
    # the label to predict is the id of the person
    y = lfw_people.target
    target_names = lfw_people.target_names
    n_classes = target_names.shape[0]
    
    print("Total dataset size:")
    print("n_samples: %d" % n_samples)
    print("n_features: %d" % n_features)
    print("n_classes: %d" % n_classes)


    ###############################################################################
    # Split into a training set and a test set using a stratified k fold
    
    # split into a training and testing set
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.25, random_state=42)


    ###############################################################################
    # Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled
    # dataset): unsupervised feature extraction / dimensionality reduction
    n_components = 80
    
    print("Extracting the top %d eigenfaces from %d faces"
          % (n_components, X_train.shape[0]))
    t0 = time()
    pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train)
    print("done in %0.3fs" % (time() - t0))
    
    eigenfaces = pca.components_.reshape((n_components, h, w))
    
    print("Projecting the input data on the eigenfaces orthonormal basis")
    t0 = time()
    X_train_pca = pca.transform(X_train)
    X_test_pca = pca.transform(X_test)
    print("done in %0.3fs" % (time() - t0))


    ###############################################################################
    # Train a SVM classification model
    
    print("Fitting the classifier to the training set")
    t0 = time()
    param_grid = {'C': [1,10, 100, 500, 1e3, 5e3, 1e4, 5e4, 1e5],
                  'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }
    clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)
    clf = clf.fit(X_train_pca, y_train)
    print("done in %0.3fs" % (time() - t0))
    print("Best estimator found by grid search:")
    print(clf.best_estimator_)
    
    print(clf.best_estimator_.n_support_)
    ###############################################################################
    # Quantitative evaluation of the model quality on the test set
    
    print("Predicting people's names on the test set")
    t0 = time()
    y_pred = clf.predict(X_test_pca)
    print("done in %0.3fs" % (time() - t0))
    
    print(classification_report(y_test, y_pred, target_names=target_names))
    print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))


    ###############################################################################
    # Qualitative evaluation of the predictions using matplotlib
    
    def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
        """Helper function to plot a gallery of portraits"""
        plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
        plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
        for i in range(n_row * n_col):
            plt.subplot(n_row, n_col, i + 1)
            # Show the feature face
            plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
            plt.title(titles[i], size=12)
            plt.xticks(())
            plt.yticks(())


    # plot the result of the prediction on a portion of the test set
    
    def title(y_pred, y_test, target_names, i):
        pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]
        true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]
        return 'predicted: %s\ntrue:      %s' % (pred_name, true_name)
    
    prediction_titles = [title(y_pred, y_test, target_names, i)
                         for i in range(y_pred.shape[0])]
    
    plot_gallery(X_test, prediction_titles, h, w)
    
    # plot the gallery of the most significative eigenfaces
    
    eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]
    plot_gallery(eigenfaces, eigenface_titles, h, w)
    
    plt.show()


深度学习-人脸识别过程

不同于机器学习模型的人脸识别,深度学习将人脸特征向量化,以及人脸向量分类结合到了一起,通过神经网络算法一步到位。

深度学习-人脸识别系统都包括:

  • 人脸检测
  • 人脸对其
  • 人脸识别

人脸检测

深度学习在图像分类中的巨大成功后很快被用于人脸检测的问题,起初解决该问题的思路大多是基于CNN网络的尺度不变性,对图片进行不同尺度的缩放,然后进行推理并直接对类别和位置信息进行预测。另外,由于对feature
map中的每一个点直接进行位置回归,得到的人脸框精度比较低,因此有人提出了基于多阶段分类器由粗到细的检测策略检测人脸,例如主要方法有Cascade CNN、
DenseBox和MTCNN等等。

MTCNN是一个多任务的方法,第一次将人脸区域检测和人脸关键点检测放在了一起,与Cascade
CNN一样也是基于cascade的框架,但是整体思路更加的巧妙合理,MTCNN总体来说分为三个部分:PNet、RNet和ONet,网络结构如下图所示。

在这里插入图片描述

人脸识别

人脸识别问题本质是一个分类问题,即每一个人作为一类进行分类检测,但实际应用过程中会出现很多问题。第一,人脸类别很多,如果要识别一个城镇的所有人,那么分类类别就将近十万以上的类别,另外每一个人之间可获得的标注样本很少,会出现很多长尾数据。根据上述问题,要对传统的CNN分类网络进行修改。

我们知道深度卷积网络虽然作为一种黑盒模型,但是能够通过数据训练的方式去表征图片或者物体的特征。因此人脸识别算法可以通过卷积网络提取出大量的人脸特征向量,然后根据相似度判断与底库比较完成人脸的识别过程,因此算法网络能不能对不同的人脸生成不同的特征,对同一人脸生成相似的特征,将是这类embedding任务的重点,也就是怎么样能够最大化类间距离以及最小化类内距离。

Metric Larning

深度学习中最先应用metric
learning思想之一的便是DeepID2了。其中DeepID2最主要的改进是同一个网络同时训练verification和classification(有两个监督信号)。其中在verification
loss的特征层中引入了contrastive loss。

Contrastive
loss不仅考虑了相同类别的距离最小化,也同时考虑了不同类别的距离最大化,通过充分运用训练样本的label信息提升人脸识别的准确性。因此,该loss函数本质上使得同一个人的照片在特征空间距离足够近,不同人在特征空间里相距足够远直到超过某个阈值。(听起来和triplet
loss有点像)。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/305054.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

导轨安装DIN12 IPO OC系列一路输入两路输出模拟信号隔离分配器4-20mA/0-5V/0-10V/0-20mA/0-±10mA/0-±20mA

概述 导轨安装DIN12 IPO OC系列模拟信号隔离放大器是一种将输入信号隔离放大、转换成按比例输出的直流信号混合集成厚模电路。产品广泛应用在电力、远程监控、仪器仪表、医疗设备、工业自控等需要直流信号隔离测控的行业。此系列产品内部采用了线性光电隔离技术相比电磁隔离具…

linux网络配置

一、查看Linux基础得网络设置 1.网关——route -n 2.IP地址——ifconfig 或 ip a ethtool -p ens33 让ens33网卡快速闪烁&#xff0c;分辨网线对应哪个网卡 3.DNS服务器——cat /etc/resolv.conf 4.主机名——hostname 5.路由——route 6.网络连接状态——ss 或 net…

python 多线程 守护线程

daemon线程&#xff1a;守护线程&#xff0c;优先级别最低&#xff0c;一般为其它线程提供服务。通常&#xff0c;daemon线程体是一个无限循环。如果所有的非daemon线程(主线程以及子线程&#xff09;都结束了&#xff0c;daemon线程自动就会终止。t.daemon 属性&#xff0c;设…

【STM32F103】RCC复位和时钟控制

前言 之前介绍外设的时候总是没有提到RCC&#xff0c;但其实我们使用STM32的外设之前都需要做的一步就是打开外设时钟。原本想着没什么可说的&#xff0c;就是用什么外设的时候就在开头加一行代码打开外设时钟就好了。直到最近写到了TIM定时器&#xff0c;我才开始觉得应该说一…

如何查询关键词的KD与搜索量

随着海外贸易的不断发展&#xff0c;越来越多的小伙伴们从事外贸行业&#xff0c;但是随着面对有限的市场和激烈的竞争&#xff0c;很多从业者往往流量的来源比较单一&#xff0c;那就是付费流量&#xff0c;包括谷歌ads&#xff0c;facebook等一些投流广告。广告的好处是当你付…

7.3 CONSTANT MEMORY AND CACHING

掩模数组M在卷积中的使用方式有三个有趣的属性。首先&#xff0c;M阵列的大小通常很小。大多数卷积掩模在每个维度上都少于10个元素。即使在3D卷积的情况下&#xff0c;掩码通常也只包含少于1000个元素。其次&#xff0c;在内核执行过程中&#xff0c;M的内容不会改变。第三&am…

基于Listener实现在线人数监测的简单案例

一、需求 只要有用户登录到服务器&#xff0c;就记录在线用户1。 二、使用到的Listner介绍 1、HttpSessionListener 监听器 当一个HttpSession刚被创建或者失效&#xff08;invalidate&#xff09;的时候&#xff0c;将会通知HttpSessionListener监听器。 方法声明功能介绍v…

目标检测-One Stage-YOLOv5

文章目录 前言一、YOLOv5的网络结构和流程YOLOv5的不同版本YOLOv5的流程YOLOv5s的网络结构图 二、YOLOv5的创新点1. 网络结构2. 输入数据处理3. 训练策略 总结 前言 前文目标检测-One Stage-YOLOv4提到YOLOv4主要是基于技巧的集成&#xff0c;对于算法落地具有重大意义&#x…

SpringIOC之support模块EmbeddedValueResolutionSupport

博主介绍&#xff1a;✌全网粉丝5W&#xff0c;全栈开发工程师&#xff0c;从事多年软件开发&#xff0c;在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战&#xff0c;博主也曾写过优秀论文&#xff0c;查重率极低&#xff0c;在这方面有丰富的经验…

国货美妆未来发展方向在哪儿?媒介盒子分析

在消费结构升级&#xff0c;审美观念和悦己意识增强等多种因素的推动下&#xff0c;国内化妆品消费持续增长&#xff0c;那么国货美妆品牌在2024年的发展重心在哪儿&#xff1f;应该如何通过合适的营销提高品牌曝光&#xff0c;提高市场竞争力呢&#xff1f;接下来就让媒介盒子…

【liunx】线程池+单例模式+STL,智能指针和线程安全+其他常见的各种锁+读者写者问题

线程池单例模式STL,智能指针和线程安全其他常见的各种锁读者写者问题 1.线程池2.线程安全的单例模式3.STL,智能指针和线程安全4.其他常见的各种锁4.读者写者问题 喜欢的点赞&#xff0c;收藏&#xff0c;关注一下把&#xff01; 1.线程池 目前我们学了挂起等待锁、条件变量、信…

一氧化碳中毒悲剧频发:探究道合顺电化学传感器促进家庭取暖安全

1月6日&#xff0c;陕西省榆林市发生了一起疑似因使用煤炭炉取暖中毒事件。通报称&#xff0c;经公安部门现场调查&#xff0c;并结合医院救治情况&#xff0c;初步判断5人属一氧化碳中毒&#xff0c;其中4人抢救无效死亡&#xff0c;令人痛心。 一般来说&#xff0c;这种在日…

如何在企业中实施自适应人工智能?

人工智能不再是企业的选择。很快&#xff0c;它也将不再是一个区分因素。商业中的适应性人工智能正在改变格局。根据最近的统计数据&#xff0c;95%的企业以上都在追求人工智能。 因此&#xff0c;为了确保你拥有竞争优势&#xff0c;你必须期待先进的人工智能选项。适应性就是…

如何使用内网穿透实现iStoreOS软路由公网远程访问局域网电脑桌面

文章目录 简介一、配置远程桌面公网地址二、家中使用永久固定地址 访问公司电脑**具体操作方法是&#xff1a;** 简介 软路由是PC的硬件加上路由系统来实现路由器的功能&#xff0c;也可以说是使用软件达成路由功能的路由器。 使用软路由控制局域网内计算机的好处&#xff1a…

Elasticsearch基本操作之文档操作

本文来说下Elasticsearch基本操作之文档操作 文章目录 文档概述创建文档示例创建文档(生成随机id)创建文档(自定义唯一性标识) 查看文档示例根据主键查看文档查看所有文档 修改文档示例全局修改文档局部修改文档 删除文档示例根据文档的唯一性标识删除文档条件删除文档 本文小结…

LabVIEW在旋转机械故障诊断中的随机共振增强应用

在现代工业自动化领域&#xff0c;准确的故障诊断对于保障机械设备的稳定运行至关重要。传统的故障检测方法往往因噪声干扰而难以捕捉到微弱的故障信号。随着LabVIEW在数据处理和系统集成方面的优势日益凸显&#xff0c;其在旋转机械故障诊断中的应用开始发挥重要作用&#xff…

OpenWrt智能路由器Wifi配置方法 目前最安全的WPA2-PSK/WPA3-SAE wifi加密配置方法

OpenWrt默认Wifi是 没有启用, 就算是启用了也是没有任何密码的, 如果需要设置密码需要我们手动进行配置, 配置方式如下: 登录路由器 http://openwrt.lan/ 默认用户名密码 root/password 然后找到 Network --> Wireless 如下图: 点击 Edit --> 然后选择 Interface Co…

工程监测中振弦采集仪的数据处理方法研究

工程监测中振弦采集仪的数据处理方法研究 工程监测中振弦采集仪的数据处理方法研究是针对振弦采集仪所采集到的数据进行分析和处理&#xff0c;以获得需要的监测信息和结构响应。以下是一种常见的数据处理方法&#xff1a; 1. 数据清洗: 首先对采集到的原始数据进行清洗&#…

2023 年精选:ChatGPT 会取代开发者吗?

由于最近发布了ChatGPT&#xff0c;人工智能再次热闹起来&#xff0c;ChatGPT 是一种自然语言聊天机器人&#xff0c;人们用它来写电子邮件、诗歌、歌词和大学论文。早期采用者甚至用它来编写Python 代码&#xff0c;以及对 shellcode 进行逆向工程并用 C 重写。ChatGPT 给那些…

Pycharm恢复默认设置

window 系统 找到下方目录-->删除. 再重新打开Pycharm C:\Users\Administrator\.PyCharm2023.3 你的不一定和我名称一样 只要是.PyCharm*因为版本不同后缀可能不一样 mac 系统 请根据需要删除下方目录 # Configuration rm -rf ~/Library/Preferences/PyCharm* # Caches …