基于海洋捕食者算法优化的Elman神经网络数据预测 - 附代码

基于海洋捕食者算法优化的Elman神经网络数据预测 - 附代码

文章目录

  • 基于海洋捕食者算法优化的Elman神经网络数据预测 - 附代码
    • 1.Elman 神经网络结构
    • 2.Elman 神经用络学习过程
    • 3.电力负荷预测概述
      • 3.1 模型建立
    • 4.基于海洋捕食者优化的Elman网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对Elman神经网络,初始权值阈值盲目随机性的缺点。采用海洋捕食者算法对ELman的阈值和权值进行优化。利用电力负荷预测模型进行测试,结果表明改进后的神经网络预测性能更佳。

1.Elman 神经网络结构

Elman 型神经网络一般分为四层:输入层、隐含层(中间层)、承接层和输出层 。 如图 1所示。输入层、隐含层、输出层的连接类似于前馈式网络 ,输入层的单元仅起信号传输作用,输出层单元起线性加权作用。隐含层单元的传递函数可采用线性或非线性函数,承接层又称上 下文层或状态层,它用来记忆隐含层单元前一时刻的输出值并返回给网络的输入 , 可以认为是 一个一步延时算子。

Elman 神经网络的特点是隐含层的输出通过承接层的延迟与存储,自联到隐含层的输入。 这种自联方式使其对历史状态的数据具有敏感性,内部反馈网络的加入增强了网络本身处理动态信息的能力 ,从而达到动态建模的目的。此外, Elman 神经网络能够以任意精度逼近任意非线性映射,可以不考虑外部噪声对系统影响的具体形式,如果给出系统的输入输出数据对 , 就可以对系统进行建模 。

在这里插入图片描述

图1.Elman网络结构

2.Elman 神经用络学习过程

以图1为例 , Elman 网络的非线性状态空间表达式为 :
y ( k ) = g ( w 3 x ( k ) ) (1) y(k) = g(w^3x(k)) \tag{1} y(k)=g(w3x(k))(1)

x ( k ) = f ( w 1 x c ( k ) + w 2 ( u ( k − 1 ) ) ) (2) x(k)=f(w^1x_c(k)+w^2(u(k-1)))\tag{2} x(k)=f(w1xc(k)+w2(u(k1)))(2)

x c ( k ) = x ( k − 1 ) (3) x_c(k)=x(k-1)\tag{3} xc(k)=x(k1)(3)

式中, y y y m m m 维输出结点向量 ; x x x n n n 维中间层结点单元向量; u u u r r r 维输入向量; x c x_c xc n n n 维反馈状态向量; w 3 w^3 w3 为中间层到输出层连接权值; w 2 w^2 w2为输入层到中间层连接权值; w 1 w^1 w1为承接层到中间层的连接权值; g ( ∗ ) g(*) g()为输出神经元的传递函数,是中间层输出的线性组合; f ( ∗ ) f(*) f()为中间层神经元的传递函数,常采用 S S S 函数 。

Elman 神经网络也采用 BP 算法进行权值修正,学习指标函数采用误差平方和函数。
E ( w ) = ∑ k = 1 n ( y k ( w ) − y k ′ ( w ) ) 2 (4) E(w)=\sum_{k=1}^n(y_k(w)-y'_k(w))^2\tag{4} E(w)=k=1n(yk(w)yk(w))2(4)

3.电力负荷预测概述

电力系统由电力网、电力用户共同组成,其任务是给广大用户不间断地提供经济、可靠、符 质量标准的电能,满足各类负荷的需求,为社会发展提供动力。由于电力的生产与使用具有特殊性,即电能难以大量储存,而且各类用户对电力的需求是时刻变化的,这就要求系统发电出力应随时与系统负荷的变化动态平衡,即系统要最大限度地发挥出设备能力,使整个系统保 持稳定且高效地运行,以满足用户的需求 。 否则,就会影响供用电的质量,甚至危及系统的安全 与稳定 。 因此,电力系统负荷预测技术发展了起来,并且是这一切得以顺利进行的前提和基础。负荷预测的核心问题是预测的技术问题,或者说是预测的数学模型。传统的数学模型是用现成的数学表达式加以描述,具有计算量小、速度快的优点,但同时也存在很多的缺陷和局限性,比如不具备自学习、自适应能力、预测系统的鲁棒性没有保障等。特别是随着我国经济 的发展,电力系统的结胸日趋复杂,电力负荷变化的非线性、时变性和不确定性的特点更加明 显,很难建立一个合适的数学模型来清晰地表达负荷 和影响负荷的变量之间的 关系。而基于神经网络的非数学模型预测法,为解决数学模型法的不足提供了新的思路 。

3.1 模型建立

利用人工神经网络对电力系统负荷进行预测,实际上是利用人工神经网络可以以任意精度逼近任一非线性函数的特性及通过学习历史数据建模的优点。而在各种人工神经网络中, 反馈式神经网络又因为其具有输入延迟,进而适合应用于电力系统负荷预测。根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。因此,用人工神经网络对电力系统负荷进行预测 ,首要的问题是确定神经网络的输入、输出节点,使其能反映电力负荷的运行规律。

一般来说,电力系统的负荷高峰通常出现在每天的 9~ 19 时之间 ,本案对每天上午的逐时负荷进行预测 ,即预测每天 9 ~ 11 时共 3 小时的负荷数据。电力系统负荷数据如下表所列,表中数据为真实数据,已经经过归 一化 。

时间负荷数据负荷数据负荷数据
2008.10.100.12910.48420.7976
2008.10.110.10840.45790.8187
2008.10.120.18280.79770.743
2008.10.130.1220.54680.8048
2008.10.140.1130.36360.814
2008.10.150.17190.60110.754
2008.10.160.12370.44250.8031
2008.10.170.17210.61520.7626
2008.10.180.14320.58450.7942

利用前 8 天的数据作为网络的训练样本,每 3 天的负荷作为输入向量,第 4 天的负荷作为目标向量。这样可以得到 5 组训练样本。第 9 天的数据作为网络的测试样本,验证网络能否合理地预测出当天的负荷数据 。

4.基于海洋捕食者优化的Elman网络

海洋捕食者算法原理请参考:https://blog.csdn.net/u011835903/article/details/118468662

利用海洋捕食者算法对Elman网络的初始权值和阈值进行优化。适应度函数设计为测试集的绝对误差和:
f i t n e s s = ∑ i = 1 n ∣ p r e d i c t n − T r u e V a l u e n ∣ (5) fitness = \sum_{i=1}^n|predict_n - TrueValue_n| \tag{5} fitness=i=1npredictnTrueValuen(5)

5.测试结果

海洋捕食者参数设置如下:

%% 网络相关参数设定
hiddNum = 18;%隐含层个数
R = size(p_train,1);%输入数据每组的维度
Q = size(t_train,1);%输出数据的维度
threshold = [0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];%每组数据对应维度的最小(0)和最大值(1);

%% 海洋捕食者相关参数设定
%% 定义海洋捕食者优化参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = hiddNum*R + hiddNum + Q + hiddNum*hiddNum + Q*hiddNum;%维度,即权值与阈值的个数,承接层个数
lb = -5.*ones(1,dim);%下边界
ub = 5.*ones(1,dim);%上边界
fobj = @(x) fun(x,hiddNum,R,Q,threshold,p_train,t_train,p_test,t_test);

在这里插入图片描述
在这里插入图片描述

从结果来看,3个时刻点,海洋捕食者-Elman均比原始结果Elman好,误差更小。

由于上述数据有限,大家可以用自己的数据进行测试。

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/302578.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

mysql索引失效的情况

目录 1破坏最左前缀法则2在索引列上做任何计算、函数操作,会导致索引失效而转向全表扫描。3存储引擎不能使用索引中范围条件右边的列4Mysql在使用不等于时无法使用索引会导致全表查询5is null可以使用索引,但是is not null无法使用索引6like以通配符开头…

网络调试 UDP1,开发板用动态地址-入门6

https://www.bilibili.com/video/BV1zx411d7eC?p11&vd_source109fb20ee1f39e5212cd7a443a0286c5 1, 开发板连接路由器 1.1,烧录无OS UDP例程 1.2,Mini USB连接电脑 1.3,开发板LAN接口连接路由器 2. Ping开发板与电脑之间通信* 2.1 根据…

消息队列-什么是MQ?何时使用MQ?怎么选择MQ?

什么是MQ? MessageQueue:就是消息 队列,任务队列,指令 队列。 功能:应用程序之间(生产者与消费者)的通信方式。 使用场景 从下面这个场景来感受MQ 的诞生 如果我们有很多任务需要处理,任务…

小白新手轻松部署扫雷小游戏

小白新手轻松部署扫雷小游戏 云效云效操作导入资源镜像仓库应用配置 最后 说到扫雷小游戏,可以说大家都玩儿过,印象中刚接触计算机的时候,对于这个扫雷小游戏,很多人都很喜欢,觉得很有意思,大家一起挑战看谁…

Spring学习 基于注解的AOP控制事务

8.1.拷贝上一章代码 8.2.applicationContext.xml <!-- 开启spring对注解事务的支持 --> <tx:annotation-driven transaction-manager"transactionManager"/> 8.3.service Service Transactional(readOnlytrue,propagation Propagation.SUPPORTS) publi…

shell中的正则表达式、编程-grep、编程-SED、以及编程-AWK

正则表达式RE 用来处理文本 正则表达式(Regular Expression, RE)是一种字符模式, 用于在查找过程中匹配指定的字符. 在大多数程序里, 正则表达式都被置于两个正斜杠之间; 例如/l[oO]ve/就是由正斜杠界定的正则表达式, 它将匹配被查找的行中任何位置出现的相同模式. 在正则表达…

DD代驾.高级数分 已二面

dd高级数据分析面试感觉更偏数科一点&#xff0c;问了很多AB实验和反事实因果推断的问题&#xff0c;同时也比较关注怎么对模型进行的评价 一面&#xff1a;小组长|组员 40min 自我介绍项目深究1、你在实际工作做AB的流程2、AB实验你们咋算的样本量3、AB实验你们啥情况会做A…

Spark MLlib ----- ALS算法

补充 在谈ALS(Alternating Least Squares)之前首先来谈谈LS,即最小二乘法。LS算法是ALS的基础,是一种数优化技术,也是一种常用的机器学习算法,他通过最小化误差平方和寻找数据的最佳匹配,利用最小二乘法寻找最优的未知数据,保证求的数据与已知的数据误差最小。LS也被用…

Sortable.js:功能强大的JavaScript 拖拽库

原文地址&#xff1a;Sortable.js&#xff1a;功能强大的JavaScript 拖拽库 一、介绍 Sortable.js一个功能强大的JavaScript 拖拽库&#xff01;&#xff01;&#xff01;用于在网页上创建可拖放和可排序的元素。它提供了简单而强大的 API&#xff0c;使开发人员能够轻松地实…

java每日一题——输出9x9乘法表(答案及编程思路)

前言&#xff1a; 打好基础&#xff0c;daydayup! 题目&#xff1a;输出下图9x9乘法表 编程思路&#xff1a;java只能输出行&#xff0c;不能输出列&#xff0c;所以考虑好每一行输出的内容即可 public class demo {public static void main(String[] args) {for (int i 1; i…

SpringBoot + Mybatis 实现多数据源原来如此简单

1、为什么需要整合多数据源 在开发的过程中&#xff0c;我们可能会遇到一个工程使用多个数据源的情况&#xff0c;总体而言分为以下几个原因 a、数据隔离&#xff1a;将不同的数据存储在不同的数据库中&#xff0c;如多租户场景 b、性能优化&#xff1a;将数据分散到多个数据库…

鹦鹉目标检测数据集VOC格式600张

鹦鹉&#xff0c;一种色彩鲜艳、聪明伶俐的鸟类&#xff0c;以其模仿人类语言的能力和独特的喙形而广受喜爱。 鹦鹉属于鸟纲、鹦鹉科&#xff0c;是热带和亚热带地区的常见鸟类。它们的喙弯曲呈钩状&#xff0c;非常适合啄食种子、果实和坚果等食物。鹦鹉的羽毛通常非常鲜艳&a…

DVWA-Hight-xss漏洞

首先来到DVWA高级模式下反射型xss漏洞处 开始测试 <script>alert(/xss/)</script> 发现直接使用js代码不行&#xff0c;被直接过滤稍微试探针对的过滤对象 发现这里针对 <script>标签会直接过滤 我们改用<img>标签试探是否过滤 发现这里针对img标签没…

c语言-数组指针

文章目录 前言一、字符指针二、数组指针2.1 数组指针基础2.2 数组指针作函数参数 三、void*类型指针总结 前言 在c语言基础已经介绍过关于指针的概念和基本使用&#xff0c;本篇文章进一步介绍c语言中关于指针的应用。 一、字符指针 字符指针是指向字符的指针。 结果分析&…

如何将ElementUI组件库中的时间控件迁移到帆软报表中

需求:需要将ElementUI组件库中的时间控件迁移到帆软报表中,具体为普通报表的参数面板中,填报报表的组件中,决策报表的组件与参数面板中。 这三个场景中分别需要用到帆软报表二开平台的ParameterWidgetOptionProvider,FormWidgetOptionProvider,CellWidgetOptionProvider开…

04、Kafka ------ 各个功能的作用解释(Cluster、集群、Broker、位移主题、复制因子、领导者副本、主题)

目录 启动命令&#xff1a;CMAK的用法★ 在CMAK中添加 Cluster★ 在CMAK中查看指定集群★ 在CMAK中查看 Broker★ 位移主题★ 复制因子★ 领导者副本和追随者副本★ 查看主题 启动命令&#xff1a; 1、启动 zookeeper 服务器端 小黑窗输入命令&#xff1a; zkServer 2、启动 …

Java桶排序、基数排序、剪枝算法

桶排序算法 桶排序的基本思想是&#xff1a; 把数组 arr 划分为 n 个大小相同子区间&#xff08;桶&#xff09;&#xff0c;每个子区间各自排序&#xff0c;最后合并 。计数排序是桶排序的一种特殊情况&#xff0c;可以把计数排序当成每个桶里只有一个元素的情况。 1.找出待…

数字孪生与物联网(IoT)技术的结合

数字孪生与物联网&#xff08;IoT&#xff09;技术的结合可以在多个领域实现更智能、更高效的应用。以下是数字孪生在物联网技术中的一些应用&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合作。 1.实时监…

lazada越南站收款问题;lazada可以使用支付宝吗?-站斧浏览器

Lazada越南站收款问题 线上支付方式&#xff1a;Lazada越南本土店提供多种线上支付方式&#xff0c;以方便消费者完成购物支付。常见的线上支付方式包括信用卡支付、借记卡支付、电子钱包支付&#xff08;如Momo、Zalo Pay等&#xff09;以及银行转账等。商家可以根据自己的需…

[VUE]4-状态管理vuex

目录 状态管理 vuex 1、vuex 介绍 2、安装 3、使用方式 4、总结 &#x1f343;作者介绍&#xff1a;双非本科大三网络工程专业在读&#xff0c;阿里云专家博主&#xff0c;专注于Java领域学习&#xff0c;擅长web应用开发、数据结构和算法&#xff0c;初步涉猎Python人工智…