AQS 抽象队列同步器

AQS

AQS (抽象队列同步器): AbstractQueuedSynchronizer 是什么

  • 来自jdk1.5,是用来实现锁或者其他同步器组件的公共基础部分的抽象实现,是重量级基础框架以及JUC的基石,主要用于解决锁分配给谁的问题
  • 整体是通过一个抽象的FIFO队列来完成资源获取线程的排队工作,并通过一个int变量表示持有锁的状态
  • 锁是面向开发人员的,而同步器是JDK统一规范并简化了锁的实现,并抽象出来的公共基础部分,屏蔽了同步状态、同步队列的管理,和线程排队、通知、唤醒等机制

和AQS相关的类有:

  • ReentranLock
  • CountDownLatch
  • ReentrantReadWriteLock
  • Semaphore

在这里插入图片描述

AQS 原理

  • 整体是通过一个抽象的FIFO队列来完成资源获取线程的排队工作,并通过一个int变量表示持有锁的状态
  • 如果共享资源被占用,就需要阻塞唤醒机制来保证锁的分配,这个机制主要是通过CLH队列的变体实现的,将暂时获取锁失败的线程,以及自身的等待状态封装成队列的节点对象node,放入队列中
  • 通过CAS、自旋等维护共享资源的状态,达到并发效果
  • 内部结构:
    • 队列的 头指针、尾指针
    • int 类型的同步状态的标识 state ,默认值0代表没有被占用,大于等于1代表被占用
    • 内部类node,将暂时获取锁失败的线程,以及自身的等待状态封装成队列的节点对象node
      • int类型变量 waitStatus 当前节点再队列中的等待状态,默认为0
        • 1表示线程被取消
        • -1表示后继线程需要被唤醒
        • -2表示等待conditon唤醒
        • -3表示共享式(锁分为共享和独占)同步状态获取将无条件地传播下去
      • 前一个节点的指针和后一个节点的指针
      • 请求线程

CLH队列

  • (Craig, Landin,Hagersten) 三个科学家名字的简称
  • 通过state状态判断是否阻塞,从尾部入队,头部出队

以ReentrantLock为例,加锁和解锁的步骤为:

lock
  • 当调用 lock 方法加锁时

    • 非公平锁,会先尝试通过cas 比较并交换的操作把 states 的状态值从 0更新为1,如果更新成功,就把持有锁的线程设置为自己
    • 更新失败就和公平锁一样,执行 AQS 的 acquire方法
    • 除此之外,公平和非公平锁的区别就是,再获取同步状态时,公平锁需要判断等待队列中再自己之前是否存在有效节点,如果有公平锁就需要排队
    • 因为公平锁讲究先到先得,线程再获取锁时,如果这个锁的等待队列已经有线程再等待,当前线程就会直接进入等待队列
    • 而非公平锁,不管是否有队列,如果可以获取锁,就会立刻占有锁的对象,所以第一个在队列里排队的线程苏醒后,仍然需要去竞争锁,且不一定能竞争到锁

acquire 方法源码:

    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

acquire

  • 调用lock方法加锁,除非是非公平锁能直接拿到锁,其他情况下都是在调用acquire 方法
  • acquire 方法分为三种情况:
  • 调用 tryAcquire 方法尝试加锁;
    • AQS类的tryAcquire方法只是做了规范,方法内直接抛出异常,所以这个方法需要由子类去实现

    • 非公平锁的tryAcquire 方法会先判断锁的状态state是否为0,为0说明没有被其他线程占用,就立即使用cas操作变更state为1,变更成功就把持有锁的线程设置为自己,变更失败就表示加锁失败

    • 如果锁的状态为1,说明锁已经被占用,在比较当前线程和持有锁的线程是否一致,不一致就加锁失败

    • tryAcquire 方法公平和非公平锁的区别是

      • 再获取同步状态时,公平锁需要判断等待队列中再自己之前是否存在有效节点,如果有公平锁就需要排队
      • 非公平锁,不管是否有队列,如果可以获取锁,就会立刻占有锁的对象
    • 如果 tryAcquire 方法抢锁失败,就需要调用 addWaiter加入到等待队列

  • 加锁失败,调用 addWaite方法,进入等待队列;
    • acquire 方法的 addWaiter 方法创建的是独占的node节点,节点中封装的是当前线程
    • 首先要判断 链表的尾指针是否为空
      • 如果为空,就需要初始化链表,首先new一个空的哨兵节点,这个节点并不存储信息,只是作为占位使用,然后设置哨兵节点为头节点,然后把头节点赋值给尾节点
      • 当链表初始化完成后,或者链表中已经由其他节点时,就用CAS操作把新节点加入到链表尾部,如果节点加入链表失败就进行下一次循环,直到把节点加入成功为止
      • 如果不为空,直接用CAS操作把新节点加入到链表尾部,同样如果节点加入链表失败就进行循环,直到把节点加入成功为止
    • 节点成功入队后,需要调用acquireQueued 方法
  • 进入队列之后,调用acquireQueued 方法,线程进入阻塞状态,等待唤醒后才能继续执行
    • 首先获取当前节点的前置节点,如果前置节点是头节点,就尝试去获取锁
    • 如果获取锁成功,就把自己设为头节点,就把锁的state改为1,设置当前线程为持有锁的线程
    • 如果前置节点不是头节点,或者获取锁失败
      • 就需要判断前置节点的waitStatus状态值,waitStatus值默认为0,第一次进入循环,会把前置节点的waitStatus的值改为-1后,继续下一次循环后,会调用 LockSupport.park 方法阻塞当前线程,需要等待其他线程释放锁后,再唤醒阻塞的线程
      • 当持有锁的线程释放锁,且调用LockSupport.unpark 唤醒该线程后才能继续执行,LockSupport.unpark 唤醒的是头节点的下一个节点
      • 线程被唤醒后,检查线程是否被中断,如果线程没有被中断,就继续进行循环
      • 继续尝试去加锁,因为是非公平锁,所以有可能会加锁失败
        • 如果加锁成功,就把锁的state改为1,设置当前线程为持有锁的线程,并且把当前线程的节点设置为链表的头节点,原本的头节点会从链表中剔除
        • 因为每次唤醒的都是头节点的下一个节点,所以成功抢到到锁后,被唤醒的节点会成为新的头节点,后续会唤醒链表的下一个节点
    • 如果线程在等待过程中取消,没有获取到锁就跳出了循环,failed值为默认的true,就会执行cancelAcquire方法,取消正在排队的节点
      • 首先设置当前节点的线程为null,然后获取上一个没有取消的前置节点,
      • 把当前节点的 waitStatus 设置为1(1就是要取消的节点)
      • 如果当前节点是尾节点,就把上一个有效的节点设置为尾节点
      • 如果不是尾节点,并且满足出队条件,就变更链表中相关节点的前置和后置引用,剔除要取消的节点

非公平锁的 tryAcquire 方法源码

        final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            //先判断锁的状态state是否为0,为0说明没有被其他线程占用
            if (c == 0) {
                //为0说明没有被其他线程占用,使用cas操作变更state为1
                if (compareAndSetState(0, acquires)) {
                    //变更成功就把持有锁的线程设置为自己,变更失败就表示加锁失败
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            //如果锁的状态为1,说明锁已经被占用,在比较当前线程和持有锁的线程是否一致
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            //加锁失败
            return false;
        }

addWaiter(Node.EXCLUSIVE) 加入等待队列 源码:

  • Node.EXCLUSIVE 代表的是独占的节点,也就是排他锁
private Node addWaiter(Node mode) {
    //node节点中封装的是当前线程
    Node node = new Node(Thread.currentThread(), mode);
    //尾指针
    Node pred = tail;
    //链表的尾指针是否为空
    if (pred != null) {
        node.prev = pred;
        //如果加入失败,就会走下面的循环,直到把节点加入链表为止
        if (compareAndSetTail(pred, node)) {
            pred.next = node;
            return node;
        }
    }
    enq(node);
    return node;
}


    private Node enq(final Node node) {
        for (;;) {
            //尾节点
            Node t = tail;
            //如果尾节点为null
            if (t == null) { // Must initialize
                //就需要new一个node节点,并且设置为头节点,然后把头节点赋值给尾节点
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                //当链表初始化完成后,或者链表中已经由其他节点时
                //把要加入链表的新节点的前指针设置为尾节点
                node.prev = t;
                //并且把新加入的节点设置为尾节点
                if (compareAndSetTail(t, node)) {
                    //设置成功就之前尾节点的后指针指向新节点,这样新节点就变成了新的尾节点,如果设置失败,就继续循环,直到把新节点加入到链表尾部为止
                    t.next = node;
                    return t;
                }
            }
        }
    }

acquireQueued 源码

  • 线程进入阻塞状态,等待唤醒后才能继续执行
	//arg为1,独占锁
	final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                //获得node节点的前置节点
                final Node p = node.predecessor();
                //node节点的前置节点是否为头节点,如果是就尝试去获取锁
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                //判断node节点的前置节点的waitStatus状态,默认情况下都是0,在第二次循环的时候,就会改成-1,然后执行parkAndCheckInterrupt方法
                //parkAndCheckInterrupt方法会阻塞当前线程
                //也就是后面的节点会把前面节点的 waitStatus 改为-1
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

	/**
	* waitStatus 当前节点再队列中的等待状态
		默认为0
		1表示线程获取锁的请求被取消
		-1表示线程已经准备好了
		-2表示节点在等待队列中,等待唤醒
		-3表示共享式(锁分为共享和独占)同步状态获取将无条件地传播下去
	*/
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        //前置节点的状态
        int ws = pred.waitStatus;
        // SIGNAL= -1 , 当线程再次进行循环的时候,前一个节点的waitStatus已经被设置为-1,就返回true
        if (ws == Node.SIGNAL)
            return true;
        //线程被取消
        if (ws > 0) {
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            //如果前置节点的 waitStatus不等于-1也不大于0,就把waitStatus的值改为-1后,返回false
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

	//阻塞当前线程
    private final boolean parkAndCheckInterrupt() {
        //验证当前线程的通行证,阻塞当前线程
        LockSupport.park(this);
        //被唤醒后,检查线程是否被中断,如果线程没有被中断,就返回 false
        return Thread.interrupted();
    }

取消正在进行的获取尝试

	// node 为需要取消的节点
 	private void cancelAcquire(Node node) {
        // Ignore if node doesn't exist
        if (node == null)
            return;
    	//设置当前节点的线程为null
        node.thread = null;
        //获取上一个节点
        Node pred = node.prev;
        //waitStatus > 0 ,表示上一个节点也要取消
        while (pred.waitStatus > 0)
            //那么就一直向上找,直到找到没有取消的前置节点
            node.prev = pred = pred.prev;
		//获取不会取消的前置节点的下一个节点
        Node predNext = pred.next;
		//把当前节点的 waitStatus 设置为1,1就是要取消的节点
        node.waitStatus = Node.CANCELLED;
		//如果当前节点是尾节点,就把上一个还有效的节点设置为尾节点
        if (node == tail && compareAndSetTail(node, pred)) {
            //设置成功,就把上一个节点的后置节点设置为null,这样上一个还有效的节点就成为了尾节点
            compareAndSetNext(pred, predNext, null);
        } else {
       		//否则
            int ws;
            //前置节点不能是头节点,因为头节点只是占位节点,并且满足出队条件
            if (pred != head &&
                ((ws = pred.waitStatus) == Node.SIGNAL ||
                 (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
                pred.thread != null) {
                //变更链表中相关节点的前置和后置引用,剔除要取消的节点
                Node next = node.next;
                if (next != null && next.waitStatus <= 0)
                    compareAndSetNext(pred, predNext, next);
            } else {
                unparkSuccessor(node);
            }

            node.next = node; // help GC
        }
    }

unlock

unlock 源码,其实是再调用release方法

    public void unlock() {
        sync.release(1);
    }

release方法会首先尝试释放锁

  • tryRelease 会把持有锁的线程为null,并且把锁的state设置为0
  • 如果链表被初始化过,有在等待的线程节点,头节点就不为空,且waitStatus值为-1
  • 接下来会把头节点的waitStatus的改为0,如果头节点的下一个节点不为null,就调用LockSupport.unpark 方法,唤醒头节点的下一个节点
    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }

AQS的tryRelease方法,同样没有做实现,需要子类自己去实现,下面是ReentrantLock的实现

		
		protected final boolean tryRelease(int releases) {
            //传入的releases为1,持有锁的线程State为1,所以C为0
            int c = getState() - releases;
            //如果当前线程不等于持有锁的线程会抛出异常,这种情况一般不会出现
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            //c等于0,就设置持有锁的线程为null,并且把state设置为0,返回true
            if (c == 0) {
                free = true;
                setExclusiveOwnerThread(null);
            }
            setState(c);
            return free;
        }

unparkSuccessor

    private void unparkSuccessor(Node node) {
        int ws = node.waitStatus;
        if (ws < 0)
            //重新把头节点的waitStatus值改为0
            compareAndSetWaitStatus(node, ws, 0);
        //头节点的下一个节点
        Node s = node.next;
        //如果链表被初始化过,有在等待的线程节点,头节点的后置节点就不为null
        //如果链表后面还有其他节点,那么头节点的后置节点waitStatus值就为-1
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        //如果头节点的下一个节点不为null,就直接调用 LockSupport.unpark 方法,唤醒头节点的下一个节点
        if (s != null)
            LockSupport.unpark(s.thread);
    }

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/299696.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

5年经验之谈 —— 探索自动化测试用例设计粒度!

自动化测试用例的粒度指的是测试用例的细致程度&#xff0c;即每个测试用例检查的功能点的数量和范围。 通常&#xff0c;根据测试用例的粒度&#xff0c;可以被分为3种不同的层次&#xff0c;从更低层次的细粒度到更高层次的粗粒度。 第一种&#xff1a;单元测试 - 细粒度 单…

编译ZLMediaKit(win10+msvc2019_x64)

前言 因工作需要&#xff0c;需要ZLMediaKit&#xff0c;为方便抓包分析&#xff0c;最好在windows系统上测试&#xff0c;但使用自己编译的第三方库一直出问题&#xff0c;无法编译通过。本文档记录下win10上的编译过程&#xff0c;供有需要的小伙伴使用 一、需要安装的软件…

2024年【化工自动化控制仪表】报名考试及化工自动化控制仪表考试技巧

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 化工自动化控制仪表报名考试是安全生产模拟考试一点通生成的&#xff0c;化工自动化控制仪表证模拟考试题库是根据化工自动化控制仪表最新版教材汇编出化工自动化控制仪表仿真模拟考试。2024年【化工自动化控制仪表】…

outlook邮件群发单显技巧?群发怎么单显?

outlook邮件群发单显如何设置&#xff1f;QQ邮箱怎么群发单显&#xff1f; 在群发邮件时&#xff0c;如何让每个收件人只看到自己的名字&#xff0c;而不是其他人的名字&#xff0c;这就涉及到所谓的“单显”技巧。下面蜂邮EDM就为大家揭秘Outlook邮件群发单显的奥秘。 outlo…

DBSCAN聚类模型

目录 介绍&#xff1a; 一、数据 二、建模 三、评价指标 3.1metrics.homogeneity_score 3.2metrics.completeness_score 3.3metrics.v_measure_score 3.4metrics.adjusted_rand_score 3.5metrics.adjusted_mutual_info_score 3.6metrics.silhouette_score 四、画图…

聊天Demo

文章目录 参考链接使用前端界面消息窗口平滑滚动至底部vue使用watch监听vuex中的变量变化 参考链接 vue.js实现带表情评论功能前后端实现&#xff08;仿B站评论&#xff09; vue.js实现带表情评论仿bilibili&#xff08;滚动加载效果&#xff09; vue.js支持表情输入 vue.js表…

【Java】2023年Java语言盘点

2023年Java语言盘点 前言语言排行榜JDK 各个版本使用情况主流框架支持情况JDK 21其他项目参考 前言 星河流转&#xff0c;日月更替&#xff0c;在2023这年里&#xff0c;Java也迎来了它的第28个年头。在这一年里&#xff0c;Java生态系统发生了许多让人瞩目的变化&#xff0c;…

计算机Java项目|Springboot疫情网课管理系统

项目编号&#xff1a;L-BS-ZXBS-07 一&#xff0c;环境介绍 语言环境&#xff1a;Java: jdk1.8 数据库&#xff1a;Mysql: mysql5.7 应用服务器&#xff1a;Tomcat: tomcat8.5.31 开发工具&#xff1a;IDEA或eclipse 二&#xff0c;项目简介 疫情网课也都将通过计算机…

智能计价器Scratch-第14届蓝桥杯Scratch省赛真题第5题

5. 智能计价器&#xff08;80分&#xff09; 背景信息&#xff1a;A城市的出租车计价&#xff1a;3公里以内13元&#xff0c;基本单价每公里2.3元(超过3公里的部分&#xff0c;不满1公里按照1公里收费&#xff09;&#xff0c;燃油附加费每运次1元。例如&#xff1a;3.2公里的…

1875_如何提升开关应用中的EMI表现

Grey 全部学习内容汇总&#xff1a; https://github.com/GreyZhang/g_hardware_basic 1875_如何提升开关应用中的EMI表现 看了一份ST的应用笔记&#xff0c;简单了解了一下EMI相关的一些设计&#xff0c;感觉还比价有收获。整理一下自己的收获点。 资料整理过程说明 参考资…

并发(8)

目录 46.Thread.sleep(),Object.wait(),Condition.await(),LockSupport.part()的区别&#xff1f; 47.如果在wait&#xff08;&#xff09;之前执行了notify&#xff08;&#xff09;会怎样&#xff1f; 48.如果在park()之前执行了unpark()会怎样&#xff1f; 49.什么是AQS&…

【Spring Cloud】关于Nacos配置管理的详解介绍

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是Java方文山&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的专栏《Spring Cloud》。&#x1f3af;&#x1f3af; &am…

从零实现CLIP模型

1. 引言 CLIP代表语言图像对比预训练模型&#xff0c;是OpenAI于2021年开发的一个深度学习模型。CLIP模型中图像和文本嵌入共享相同的潜在特征空间&#xff0c;从而能够在两种模式之间直接进行对比学习。这是通过训练模型使相关的图像和文本更紧密地结合在一起&#xff0c;同时…

基于原子搜索算法优化的Elman神经网络数据预测 - 附代码

基于原子搜索算法优化的Elman神经网络数据预测 - 附代码 文章目录 基于原子搜索算法优化的Elman神经网络数据预测 - 附代码1.Elman 神经网络结构2.Elman 神经用络学习过程3.电力负荷预测概述3.1 模型建立 4.基于原子搜索优化的Elman网络5.测试结果6.参考文献7.Matlab代码 摘要&…

Linux:nginx设置网站https

http和https的区别 http: 80 https: 443 这种协议比http协议要安全&#xff0c;因为传输数据是经过加密的 HTTPS简介 HTTPS其实是有两部分组成&#xff1a;HTTP SSL / TLS&#xff0c;也就是在HTTP上又加了一层处理加密信息的模块。服务端和客户端的信息传输都会通过…

在IDEA中使用git分支进行开发然后合并到Master分支,2022.1.x版本

在实际开发过程中&#xff0c;为了避免因为在开发中出现的问题以及方便发布版本&#xff0c;如果是多版本发布的情况相下&#xff0c;我们通常需要采用分支进行开发&#xff0c;这个时候&#xff0c;我们就需要了解git分支的相关知识点了&#xff0c;本篇博客也是博主在实际公司…

【SpringCloud】之配置中心(进阶使用)

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是君易--鑨&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的博客专栏《SpringCloud开发之远程消费》。&#x1f3af;&a…

MMFF-NET:多层次多尺度特征融合的弱光图像增强网络

这是我去年的工作&#xff0c;我录用的第一篇SCI&#xff0c;很拉&#xff0c;3区。今年中科院新版分区&#xff0c;变成4区了。很遗憾。后面会持续给大家更新我的文章以及我的内容。硕士阶段的东西几乎创新点都很差。 但是对于初学者我希望它有一定的参考价值。 文章链接&am…

利用Type类来获得字段名称(Unity C#中的反射)

使用Type类以前需要引用反射的命名空间&#xff1a; using System.Reflection; 以下是完整代码&#xff1a; public class ReflectionDemo : MonoBehaviour {void Start(){A a new A();B b new B();A[] abArraynew A[] { a, b };foreach(A v in abArray){Type t v.GetTyp…

不带控制器打包exe,转pdf文件时失败的原因

加了注释的两条代码后&#xff0c;控制器会显示一个docx转pdf的进度条。这个进度条需要控制器的实现&#xff0c;如果转exe不带控制器的话&#xff0c;当点击转换为pdf的按钮就会导致程序出错和闪退。 __init__.py文件的入口