基于原子搜索算法优化的Elman神经网络数据预测 - 附代码

基于原子搜索算法优化的Elman神经网络数据预测 - 附代码

文章目录

  • 基于原子搜索算法优化的Elman神经网络数据预测 - 附代码
    • 1.Elman 神经网络结构
    • 2.Elman 神经用络学习过程
    • 3.电力负荷预测概述
      • 3.1 模型建立
    • 4.基于原子搜索优化的Elman网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对Elman神经网络,初始权值阈值盲目随机性的缺点。采用原子搜索算法对ELman的阈值和权值进行优化。利用电力负荷预测模型进行测试,结果表明改进后的神经网络预测性能更佳。

1.Elman 神经网络结构

Elman 型神经网络一般分为四层:输入层、隐含层(中间层)、承接层和输出层 。 如图 1所示。输入层、隐含层、输出层的连接类似于前馈式网络 ,输入层的单元仅起信号传输作用,输出层单元起线性加权作用。隐含层单元的传递函数可采用线性或非线性函数,承接层又称上 下文层或状态层,它用来记忆隐含层单元前一时刻的输出值并返回给网络的输入 , 可以认为是 一个一步延时算子。

Elman 神经网络的特点是隐含层的输出通过承接层的延迟与存储,自联到隐含层的输入。 这种自联方式使其对历史状态的数据具有敏感性,内部反馈网络的加入增强了网络本身处理动态信息的能力 ,从而达到动态建模的目的。此外, Elman 神经网络能够以任意精度逼近任意非线性映射,可以不考虑外部噪声对系统影响的具体形式,如果给出系统的输入输出数据对 , 就可以对系统进行建模 。

在这里插入图片描述

图1.Elman网络结构

2.Elman 神经用络学习过程

以图1为例 , Elman 网络的非线性状态空间表达式为 :
y ( k ) = g ( w 3 x ( k ) ) (1) y(k) = g(w^3x(k)) \tag{1} y(k)=g(w3x(k))(1)

x ( k ) = f ( w 1 x c ( k ) + w 2 ( u ( k − 1 ) ) ) (2) x(k)=f(w^1x_c(k)+w^2(u(k-1)))\tag{2} x(k)=f(w1xc(k)+w2(u(k1)))(2)

x c ( k ) = x ( k − 1 ) (3) x_c(k)=x(k-1)\tag{3} xc(k)=x(k1)(3)

式中, y y y m m m 维输出结点向量 ; x x x n n n 维中间层结点单元向量; u u u r r r 维输入向量; x c x_c xc n n n 维反馈状态向量; w 3 w^3 w3 为中间层到输出层连接权值; w 2 w^2 w2为输入层到中间层连接权值; w 1 w^1 w1为承接层到中间层的连接权值; g ( ∗ ) g(*) g()为输出神经元的传递函数,是中间层输出的线性组合; f ( ∗ ) f(*) f()为中间层神经元的传递函数,常采用 S S S 函数 。

Elman 神经网络也采用 BP 算法进行权值修正,学习指标函数采用误差平方和函数。
E ( w ) = ∑ k = 1 n ( y k ( w ) − y k ′ ( w ) ) 2 (4) E(w)=\sum_{k=1}^n(y_k(w)-y'_k(w))^2\tag{4} E(w)=k=1n(yk(w)yk(w))2(4)

3.电力负荷预测概述

电力系统由电力网、电力用户共同组成,其任务是给广大用户不间断地提供经济、可靠、符 质量标准的电能,满足各类负荷的需求,为社会发展提供动力。由于电力的生产与使用具有特殊性,即电能难以大量储存,而且各类用户对电力的需求是时刻变化的,这就要求系统发电出力应随时与系统负荷的变化动态平衡,即系统要最大限度地发挥出设备能力,使整个系统保 持稳定且高效地运行,以满足用户的需求 。 否则,就会影响供用电的质量,甚至危及系统的安全 与稳定 。 因此,电力系统负荷预测技术发展了起来,并且是这一切得以顺利进行的前提和基础。负荷预测的核心问题是预测的技术问题,或者说是预测的数学模型。传统的数学模型是用现成的数学表达式加以描述,具有计算量小、速度快的优点,但同时也存在很多的缺陷和局限性,比如不具备自学习、自适应能力、预测系统的鲁棒性没有保障等。特别是随着我国经济 的发展,电力系统的结胸日趋复杂,电力负荷变化的非线性、时变性和不确定性的特点更加明 显,很难建立一个合适的数学模型来清晰地表达负荷 和影响负荷的变量之间的 关系。而基于神经网络的非数学模型预测法,为解决数学模型法的不足提供了新的思路 。

3.1 模型建立

利用人工神经网络对电力系统负荷进行预测,实际上是利用人工神经网络可以以任意精度逼近任一非线性函数的特性及通过学习历史数据建模的优点。而在各种人工神经网络中, 反馈式神经网络又因为其具有输入延迟,进而适合应用于电力系统负荷预测。根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。因此,用人工神经网络对电力系统负荷进行预测 ,首要的问题是确定神经网络的输入、输出节点,使其能反映电力负荷的运行规律。

一般来说,电力系统的负荷高峰通常出现在每天的 9~ 19 时之间 ,本案对每天上午的逐时负荷进行预测 ,即预测每天 9 ~ 11 时共 3 小时的负荷数据。电力系统负荷数据如下表所列,表中数据为真实数据,已经经过归 一化 。

时间负荷数据负荷数据负荷数据
2008.10.100.12910.48420.7976
2008.10.110.10840.45790.8187
2008.10.120.18280.79770.743
2008.10.130.1220.54680.8048
2008.10.140.1130.36360.814
2008.10.150.17190.60110.754
2008.10.160.12370.44250.8031
2008.10.170.17210.61520.7626
2008.10.180.14320.58450.7942

利用前 8 天的数据作为网络的训练样本,每 3 天的负荷作为输入向量,第 4 天的负荷作为目标向量。这样可以得到 5 组训练样本。第 9 天的数据作为网络的测试样本,验证网络能否合理地预测出当天的负荷数据 。

4.基于原子搜索优化的Elman网络

原子搜索算法原理请参考:https://blog.csdn.net/u011835903/article/details/112909360

利用原子搜索算法对Elman网络的初始权值和阈值进行优化。适应度函数设计为测试集的绝对误差和:
f i t n e s s = ∑ i = 1 n ∣ p r e d i c t n − T r u e V a l u e n ∣ (5) fitness = \sum_{i=1}^n|predict_n - TrueValue_n| \tag{5} fitness=i=1npredictnTrueValuen(5)

5.测试结果

原子搜索参数设置如下:

%% 网络相关参数设定
hiddNum = 18;%隐含层个数
R = size(p_train,1);%输入数据每组的维度
Q = size(t_train,1);%输出数据的维度
threshold = [0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];%每组数据对应维度的最小(0)和最大值(1);

%% 原子搜索相关参数设定
%% 定义原子搜索优化参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = hiddNum*R + hiddNum + Q + hiddNum*hiddNum + Q*hiddNum;%维度,即权值与阈值的个数,承接层个数
lb = -5.*ones(1,dim);%下边界
ub = 5.*ones(1,dim);%上边界
fobj = @(x) fun(x,hiddNum,R,Q,threshold,p_train,t_train,p_test,t_test);

在这里插入图片描述
在这里插入图片描述

从结果来看,3个时刻点,原子搜索-Elman均比原始结果Elman好,误差更小。

由于上述数据有限,大家可以用自己的数据进行测试。

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/299674.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux:nginx设置网站https

http和https的区别 http: 80 https: 443 这种协议比http协议要安全,因为传输数据是经过加密的 HTTPS简介 HTTPS其实是有两部分组成:HTTP SSL / TLS,也就是在HTTP上又加了一层处理加密信息的模块。服务端和客户端的信息传输都会通过…

在IDEA中使用git分支进行开发然后合并到Master分支,2022.1.x版本

在实际开发过程中,为了避免因为在开发中出现的问题以及方便发布版本,如果是多版本发布的情况相下,我们通常需要采用分支进行开发,这个时候,我们就需要了解git分支的相关知识点了,本篇博客也是博主在实际公司…

【SpringCloud】之配置中心(进阶使用)

🎉🎉欢迎来到我的CSDN主页!🎉🎉 🏅我是君易--鑨,一个在CSDN分享笔记的博主。📚📚 🌟推荐给大家我的博客专栏《SpringCloud开发之远程消费》。🎯&a…

MMFF-NET:多层次多尺度特征融合的弱光图像增强网络

这是我去年的工作,我录用的第一篇SCI,很拉,3区。今年中科院新版分区,变成4区了。很遗憾。后面会持续给大家更新我的文章以及我的内容。硕士阶段的东西几乎创新点都很差。 但是对于初学者我希望它有一定的参考价值。 文章链接&am…

利用Type类来获得字段名称(Unity C#中的反射)

使用Type类以前需要引用反射的命名空间: using System.Reflection; 以下是完整代码: public class ReflectionDemo : MonoBehaviour {void Start(){A a new A();B b new B();A[] abArraynew A[] { a, b };foreach(A v in abArray){Type t v.GetTyp…

不带控制器打包exe,转pdf文件时失败的原因

加了注释的两条代码后,控制器会显示一个docx转pdf的进度条。这个进度条需要控制器的实现,如果转exe不带控制器的话,当点击转换为pdf的按钮就会导致程序出错和闪退。 __init__.py文件的入口

分布式事务理论及Seata实践

分布式事务简介 事务是指作为单个逻辑工作单元执行的一系列操作,要么完全地执行,要么完全地不执行。 事务处理可以确保除非事务性单元内的所有操作都成功完成,否则不会永久更新面向数据的资源。事务的四个特征(ACID) …

FineBI实战项目一(3):Kettle实现ETL到数据仓库

目前,finebi_shop_bi 中是没有任何数据的,是一个空的数据库。而后续我们的所有数据分析都将在该数据库中进行。我们第一件事情就是要将 「finebi_shop」数据库中的所有表抽取到「finebi_shop_bi」数据库中。要抽取并装载数据到「finebi_shop_bi」中&…

超维空间M1无人机使用说明书——51、ROS无人机使用AR二维码识别与定位

引言:二维码识别与定位是指ROS通过创建AR标签并且对AR标签进行识别,标签可以由自己任意创建,具体方法会在文中给出,摄像头可以通过识别AR标签大小和姿态获取到标签对应的ID和位置等信息,实现识别与定位 注意&#xff…

Qt/QML编程学习之心得:Linux下Thread线程创建(26)

GUI设计中经常为了不将界面卡死,会用到线程Thread,而作为GUI设计工具,Qt也提供了一个这样的类,即QThread。 QThread对象管理程序中的一个控制线程。线程QThread开始在run()中执行。默认情况下,run()通过调用exec()启动事件循环,并在线程内运行Qt事件循环。 也可以通过…

Camtasia2024苹果Mac电脑版(屏幕录制剪辑软件)

Camtasia Mac2024免费版是一款由TechSmith公司官方进行汉化推出的最新版本,借助Camtasia,您可以轻松记录屏幕并创建优美,专业的视频。记录所有内容-您的整个屏幕或只是一个窗口。或者,添加您已经拥有的视频,图像&#…

python 文件

open """ def open(file: FileDescriptorOrPath, //路径mode: OpenTextMode "r", //设置打开文件的模式 r 以只读方式打开文件。文件的指针将会放在文件的开头。这是默认模式。 w 打开一个文件只用写入。如果该文件已存在则打开文件&#…

一文讲透Python数据分析可视化之直方图(柱状图)

直方图(Histogram)又称柱状图,是一种统计报告图,由一系列高度不等的纵向条纹或线段表示数据分布的情况。一般用横轴表示数据类型,纵轴表示分布情况。通过绘制直方图可以较为直观地传递有关数据的变化信息,使…

【Python从入门到进阶】46、58同城Scrapy项目案例介绍

接上篇《45、Scrapy框架核心组件介绍》 上一篇我们学习了Scrapy框架的核心组件的使用。本篇我们进入实战第一篇,以58同城的Scrapy项目案例,结合实际再次巩固一下项目结构以及代码逻辑的用法。 一、案例网站介绍 58同城是一个生活服务类平台&#xff0c…

msckf_vio在ubuntu20.04中的编译

1.新建catkin workspace文件夹,并在其中新建src文件夹,并将源码clone至src内。 源码地址:https://github.com/KumarRobotics/msckf_vio 目录层级示意如下,build和devel不必新建,后续指令会自动新建。 2. 在编译之前…

java CAS

CAS 在高并发场景,可以使用加锁 或者CAS来保证原子性,但是加锁是很重量级的操作,CAS类似于乐观锁CAS ( Compare and swap )比较并交换,是实现并发算法时常用到的技术,包含三个操作数&#xff1…

LVGL的List控件的触摸按键和实体按键的处理

在LVGL的List控件使用过程中,虽然通过触摸按键选择item,但是有些场景需要实体按键选取item,但是LVGL 的V8.3中没有像Emwin那样有函数选择list item的函数。LVGL中List引入了Group的概念,把列表项都添加到同一个group中。然后通过更…

Linux Capabilities 基础概念与基本使用

目录 1. Linux capabilities 是什么? 2. capabilities 的赋予和继承 线程的 capabilities Permitted* 允许 Effective* 有效 Inheritable* 遗传 Bounding(集合) Ambient 文件的 capabilities Permitted Inheritable Effective 3…

2.4 DEVICE GLOBAL MEMORY AND DATA TRANSFER

在当前的CUDA系统中,设备通常是带有自己的动态随机存取存储器(DRAM)的硬件卡。例如,NVIDIA GTX1080具有高达8 GB的DRAM,称为全局内存。我们将互换使用全局内存和设备内存这两个术语。为了在设备上执行内核,…

通过聚道云软件连接器实现钉钉与自研主数据系统的完美融合

客户介绍 某知名高校,拥有数千名教职工,日常管理涉及大量的人员异动信息。该高校设有多个学院和研究所,涵盖了工、理、管、文等多个学科领域。该高校是一所充满活力和潜力的学府,致力于为学生提供优质的教育资源和多元化的学习环…