【InternLM】Lagent智能体工具调用实践浦语·灵笔(InternLM-XComposer)图文理解创作Demo练习

目录

  • 前言
  • 一、Lagent智能体工具
    • 1-1、什么是智能体?
    • 1-2、Lagent智能体
  • 二、InternLM-XComposer(图文理解创作模型介绍)
  • 三、Lagent调用实践
    • 3-0、环境搭建
    • 3-1、创建虚拟环境
    • 3-2、导入所需要的包
    • 3-3、模型下载
    • 3-4、Lagent安装
    • 3-5、demo运行
  • 四、InternLM-XComposer本地部署实践
    • 4-0、环境搭建
    • 4-1、创建虚拟环境
    • 4-2、导入所需要的包
    • 4-3、模型下载
    • 4.4 代码准备
    • 4.5 Demo 运行
  • 附录:
    • 1、模型下载(Hugging Face)
  • 总结


前言

AI Agent(人工智能代理)是一种能够感知环境、进行决策和执行动作的智能实体。

一、Lagent智能体工具

1-1、什么是智能体?

背景介绍:随着技术的发展,大语言模型的规模也在不断扩大,也涌现出了上下文学习能力、推理能力、思维链等类似人类思考方式的多种能力,但是,大语言模型仍然存在着大量问题,例如幻觉、上下文限制等等,为了解决这些问题,Ai Agent应用而生,通过让大模型借助一个或者多个Agent的能力,构建成为具备自主思考、决策并且执行的智能体。

智能体(AI Agent):基于大模型,让人们以自然语言为交互方式,是一种能够通过对话感知任务、进行决策并且执行动作的智能实体。简言之:AI Agent 具备通过独立思考、调用工具去逐步完成给定目标的能力。诸如西部世界小镇(25个AI智能体在游戏世界上班、闲聊、social、交友,甚至还能谈恋爱,而且每个Agent都有自己的个性和背景故事)、AutoGPT等火爆的Agent项目。

如下图为西部世界小镇游戏截图
在这里插入图片描述

西部世界小镇新闻链接:《西部世界》真来了!斯坦福爆火「小镇」开源,25个AI智能体恋爱交友|附保姆级教程
项目地址:https://github.com/joonspk-research/generative_agents

与大模型的区别:大模型与人类之间的交互是基于 prompt 实现的,用户 prompt 是否清晰明确会影响大模型回答的效果。而 AI Agent 的工作仅需给定一个目标,它就能够针对目标独立思考并做出行动。

1-2、Lagent智能体

官方GitHub链接:https://github.com/InternLM/lagent?tab=readme-ov-file
在这里插入图片描述

Lagent:Lagent是一个轻量级的开源框架,允许用户高效地构建基于大型语言模型(LLM)的代理。它还提供了一些典型的工具来增强 LLM。框架概述如下所示:

在这里插入图片描述

二、InternLM-XComposer(图文理解创作模型介绍)

官方GitHub链接:https://github.com/InternLM/InternLM-XComposer
在这里插入图片描述

介绍:InternLM-XComposer 是一个基于 InternLM 的视觉语言大模型 (VLLM),用于高级文本图像理解和合成。

该模型具有以下特点
丰富的多语言知识理解:通过对广泛的多模态多语言概念的训练和精心设计的策略,增强文本图像理解的能力,从而对视觉内容有深刻的理解
图文合成:InternLM-XComposer 可以毫不费力地生成连贯且上下文相关的文章,无缝集成图像,提供更具吸引力和身临其境的阅读体验。文本-图像合成通过以下步骤实现:

  • 文本生成:它根据人工提供的说明制作长格式文本。
  • 图像发现:它精确定位图像放置的最佳位置并提供图像描述。
  • 图像检索和选择:它选择候选图像并识别与内容最佳补充的图像。

三、Lagent调用实践

3-0、环境搭建

环境:租用autoDL,环境选torch1.11.0,ubuntu20.04,python版本为3.8,cuda版本为11.3,使用v100来进行实验。
在这里插入图片描述
在这里插入图片描述

3-1、创建虚拟环境

bash # 请每次使用 jupyter lab 打开终端时务必先执行 bash 命令进入 bash 中

# 创建虚拟环境
conda create -n internlm

# 激活虚拟环境
conda activate internlm

3-2、导入所需要的包

# 升级pip
python -m pip install --upgrade pip

# 下载速度慢可以考虑一下更换镜像源。
# pip config set global.index-url https://mirrors.cernet.edu.cn/pypi/web/simple

pip install modelscope==1.9.5
pip install transformers==4.35.2
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1

3-3、模型下载

概述:使用魔搭社区下载模型,使用到了snapshot_download函数,第一个参数为模型名称,参数 cache_dir 为模型的下载路径(我这里的路径在/root/model下),将下列代码写入到一个py文件中,使用命令:python 文件名 来执行下载。

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm-chat-7b', cache_dir='/root/model', revision='v1.0.3')

下载图片如下:需要预留大约20G的空间。
在这里插入图片描述

3-4、Lagent安装

# 创建目录
cd /root/code
git clone https://gitee.com/internlm/lagent.git
cd /root/code/lagent
git checkout 511b03889010c4811b1701abb153e02b8e94fb5e # 尽量保证和教程commit版本一致
pip install -e . # 源码安装

代码修改::将 /root/code/lagent/examples/react_web_demo.py 内容替换为以下代码

import copy
import os

import streamlit as st
from streamlit.logger import get_logger

from lagent.actions import ActionExecutor, GoogleSearch, PythonInterpreter
from lagent.agents.react import ReAct
from lagent.llms import GPTAPI
from lagent.llms.huggingface import HFTransformerCasualLM


class SessionState:

    def init_state(self):
        """Initialize session state variables."""
        st.session_state['assistant'] = []
        st.session_state['user'] = []

        #action_list = [PythonInterpreter(), GoogleSearch()]
        action_list = [PythonInterpreter()]
        st.session_state['plugin_map'] = {
            action.name: action
            for action in action_list
        }
        st.session_state['model_map'] = {}
        st.session_state['model_selected'] = None
        st.session_state['plugin_actions'] = set()

    def clear_state(self):
        """Clear the existing session state."""
        st.session_state['assistant'] = []
        st.session_state['user'] = []
        st.session_state['model_selected'] = None
        if 'chatbot' in st.session_state:
            st.session_state['chatbot']._session_history = []


class StreamlitUI:

    def __init__(self, session_state: SessionState):
        self.init_streamlit()
        self.session_state = session_state

    def init_streamlit(self):
        """Initialize Streamlit's UI settings."""
        st.set_page_config(
            layout='wide',
            page_title='lagent-web',
            page_icon='./docs/imgs/lagent_icon.png')
        # st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
        st.sidebar.title('模型控制')

    def setup_sidebar(self):
        """Setup the sidebar for model and plugin selection."""
        model_name = st.sidebar.selectbox(
            '模型选择:', options=['gpt-3.5-turbo','internlm'])
        if model_name != st.session_state['model_selected']:
            model = self.init_model(model_name)
            self.session_state.clear_state()
            st.session_state['model_selected'] = model_name
            if 'chatbot' in st.session_state:
                del st.session_state['chatbot']
        else:
            model = st.session_state['model_map'][model_name]

        plugin_name = st.sidebar.multiselect(
            '插件选择',
            options=list(st.session_state['plugin_map'].keys()),
            default=[list(st.session_state['plugin_map'].keys())[0]],
        )

        plugin_action = [
            st.session_state['plugin_map'][name] for name in plugin_name
        ]
        if 'chatbot' in st.session_state:
            st.session_state['chatbot']._action_executor = ActionExecutor(
                actions=plugin_action)
        if st.sidebar.button('清空对话', key='clear'):
            self.session_state.clear_state()
        uploaded_file = st.sidebar.file_uploader(
            '上传文件', type=['png', 'jpg', 'jpeg', 'mp4', 'mp3', 'wav'])
        return model_name, model, plugin_action, uploaded_file

    def init_model(self, option):
        """Initialize the model based on the selected option."""
        if option not in st.session_state['model_map']:
            if option.startswith('gpt'):
                st.session_state['model_map'][option] = GPTAPI(
                    model_type=option)
            else:
                st.session_state['model_map'][option] = HFTransformerCasualLM(
                    '/root/model/Shanghai_AI_Laboratory/internlm-chat-7b')
        return st.session_state['model_map'][option]

    def initialize_chatbot(self, model, plugin_action):
        """Initialize the chatbot with the given model and plugin actions."""
        return ReAct(
            llm=model, action_executor=ActionExecutor(actions=plugin_action))

    def render_user(self, prompt: str):
        with st.chat_message('user'):
            st.markdown(prompt)

    def render_assistant(self, agent_return):
        with st.chat_message('assistant'):
            for action in agent_return.actions:
                if (action):
                    self.render_action(action)
            st.markdown(agent_return.response)

    def render_action(self, action):
        with st.expander(action.type, expanded=True):
            st.markdown(
                "<p style='text-align: left;display:flex;'> <span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'>插    件</span><span style='width:14px;text-align:left;display:block;'>:</span><span style='flex:1;'>"  # noqa E501
                + action.type + '</span></p>',
                unsafe_allow_html=True)
            st.markdown(
                "<p style='text-align: left;display:flex;'> <span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'>思考步骤</span><span style='width:14px;text-align:left;display:block;'>:</span><span style='flex:1;'>"  # noqa E501
                + action.thought + '</span></p>',
                unsafe_allow_html=True)
            if (isinstance(action.args, dict) and 'text' in action.args):
                st.markdown(
                    "<p style='text-align: left;display:flex;'><span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'> 执行内容</span><span style='width:14px;text-align:left;display:block;'>:</span></p>",  # noqa E501
                    unsafe_allow_html=True)
                st.markdown(action.args['text'])
            self.render_action_results(action)

    def render_action_results(self, action):
        """Render the results of action, including text, images, videos, and
        audios."""
        if (isinstance(action.result, dict)):
            st.markdown(
                "<p style='text-align: left;display:flex;'><span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'> 执行结果</span><span style='width:14px;text-align:left;display:block;'>:</span></p>",  # noqa E501
                unsafe_allow_html=True)
            if 'text' in action.result:
                st.markdown(
                    "<p style='text-align: left;'>" + action.result['text'] +
                    '</p>',
                    unsafe_allow_html=True)
            if 'image' in action.result:
                image_path = action.result['image']
                image_data = open(image_path, 'rb').read()
                st.image(image_data, caption='Generated Image')
            if 'video' in action.result:
                video_data = action.result['video']
                video_data = open(video_data, 'rb').read()
                st.video(video_data)
            if 'audio' in action.result:
                audio_data = action.result['audio']
                audio_data = open(audio_data, 'rb').read()
                st.audio(audio_data)


def main():
    logger = get_logger(__name__)
    # Initialize Streamlit UI and setup sidebar
    if 'ui' not in st.session_state:
        session_state = SessionState()
        session_state.init_state()
        st.session_state['ui'] = StreamlitUI(session_state)

    else:
        st.set_page_config(
            layout='wide',
            page_title='lagent-web',
            page_icon='./docs/imgs/lagent_icon.png')
        # st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
    model_name, model, plugin_action, uploaded_file = st.session_state[
        'ui'].setup_sidebar()

    # Initialize chatbot if it is not already initialized
    # or if the model has changed
    if 'chatbot' not in st.session_state or model != st.session_state[
            'chatbot']._llm:
        st.session_state['chatbot'] = st.session_state[
            'ui'].initialize_chatbot(model, plugin_action)

    for prompt, agent_return in zip(st.session_state['user'],
                                    st.session_state['assistant']):
        st.session_state['ui'].render_user(prompt)
        st.session_state['ui'].render_assistant(agent_return)
    # User input form at the bottom (this part will be at the bottom)
    # with st.form(key='my_form', clear_on_submit=True):

    if user_input := st.chat_input(''):
        st.session_state['ui'].render_user(user_input)
        st.session_state['user'].append(user_input)
        # Add file uploader to sidebar
        if uploaded_file:
            file_bytes = uploaded_file.read()
            file_type = uploaded_file.type
            if 'image' in file_type:
                st.image(file_bytes, caption='Uploaded Image')
            elif 'video' in file_type:
                st.video(file_bytes, caption='Uploaded Video')
            elif 'audio' in file_type:
                st.audio(file_bytes, caption='Uploaded Audio')
            # Save the file to a temporary location and get the path
            file_path = os.path.join(root_dir, uploaded_file.name)
            with open(file_path, 'wb') as tmpfile:
                tmpfile.write(file_bytes)
            st.write(f'File saved at: {file_path}')
            user_input = '我上传了一个图像,路径为: {file_path}. {user_input}'.format(
                file_path=file_path, user_input=user_input)
        agent_return = st.session_state['chatbot'].chat(user_input)
        st.session_state['assistant'].append(copy.deepcopy(agent_return))
        logger.info(agent_return.inner_steps)
        st.session_state['ui'].render_assistant(agent_return)


if __name__ == '__main__':
    root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
    root_dir = os.path.join(root_dir, 'tmp_dir')
    os.makedirs(root_dir, exist_ok=True)
    main()

3-5、demo运行

streamlit run /root/code/lagent/examples/react_web_demo.py --server.address 127.0.0.1 --server.port 6006

结果如图所示
在这里插入图片描述

四、InternLM-XComposer本地部署实践

4-0、环境搭建

环境:租用autoDL,环境选torch1.11.0,ubuntu20.04,python版本为3.8,cuda版本为11.3,使用v100来进行实验。
在这里插入图片描述
在这里插入图片描述

4-1、创建虚拟环境

bash # 请每次使用 jupyter lab 打开终端时务必先执行 bash 命令进入 bash 中

# 创建虚拟环境
conda create -n internlm

# 激活虚拟环境
conda activate internlm

4-2、导入所需要的包

# 升级pip
python -m pip install --upgrade pip

# 下载速度慢可以考虑一下更换镜像源。
# pip config set global.index-url https://mirrors.cernet.edu.cn/pypi/web/simple

# 将以下依赖包放置在txt文件中并使用命令:pip install -r requirements.txt 来进行安装。

Notice: 详细依赖版本点赞收藏关注我后私信获取,以下为部分展示

accelerate==0.25.0
aiofiles==23.2.1
altair==5.2.0
annotated-types==0.6.0
anyio==4.2.0
attrs==23.2.0
Brotli @ file:///tmp/abs_ecyw11_7ze/croots/recipe/brotli-split_1659616059936/work
certifi @ file:///croot/certifi_1700501669400/work/certifi
cffi @ file:///croot/cffi_1700254295673/work
charset-normalizer @ file:///tmp/build/80754af9/charset-normalizer_1630003229654/work
click==8.1.7
contourpy==1.2.0
cryptography @ file:///croot/cryptography_1694444244250/work
cycler==0.12.1
einops==0.7.0
exceptiongroup==1.2.0
fastapi==0.108.0
ffmpy==0.3.1
filelock @ file:///croot/filelock_1700591183607/work
fonttools==4.47.0
fsspec==2023.12.2
gmpy2 @ file:///tmp/build/80754af9/gmpy2_1645455533097/work
gradio==3.44.4
gradio_client==0.5.1
h11==0.14.0
httpcore==1.0.2
httpx==0.26.0
huggingface-hub==0.20.2
idna @ file:///croot/idna_1666125576474/work
importlib-resources==6.1.1
Jinja2 @ file:///croot/jinja2_1666908132255/work
jsonschema==4.20.0
jsonschema-specifications==2023.12.1
kiwisolver==1.4.5
markdown2==2.4.10
MarkupSafe @ file:///opt/conda/conda-bld/markupsafe_1654597864307/work
matplotlib==3.8.2
mkl-fft @ file:///croot/mkl_fft_1695058164594/work
mkl-random @ file:///croot/mkl_random_1695059800811/work
mkl-service==2.4.0
mpmath @ file:///croot/mpmath_1690848262763/work
networkx @ file:///croot/networkx_1690561992265/work
numpy @ file:///croot/numpy_and_numpy_base_1701295038894/work/dist/numpy-1.26.2-cp310-cp310-linux_x86_64.whl#sha256=2ab675fa590076aa37cc29d18231416c01ea433c0e93be0da3cfd734170cfc6f
orjson==3.9.10
packaging==23.2
pandas==2.1.4
Pillow @ file:///croot/pillow_1696580024257/work
psutil==5.9.7
pycparser @ file:///tmp/build/80754af9/pycparser_1636541352034/work
pydantic==2.5.3
pydantic_core==2.14.6
pydub==0.25.1
pyOpenSSL @ file:///croot/pyopenssl_1690223430423/work
pyparsing==3.1.1
PySocks @ file:///home/builder/ci_310/pysocks_1640793678128/work
python-dateutil==2.8.2
python-multipart==0.0.6
pytz==2023.3.post1
PyYAML==6.0.1
referencing==0.32.1
regex==2023.12.25
requests @ file:///croot/requests_1690400202158/work
rpds-py==0.16.2
safetensors==0.4.1
semantic-version==2.10.0
sentencepiece==0.1.99
six==1.16.0
sniffio==1.3.0
starlette==0.32.0.post1
sympy @ file:///croot/sympy_1668202399572/work
timm==0.4.12
tokenizers==0.13.3
toolz==0.12.0
torch==2.0.1
torchaudio==2.0.2
torchvision==0.15.2
tqdm==4.66.1
transformers==4.33.1
triton==2.0.0
typing_extensions==4.9.0
tzdata==2023.4
urllib3 @ file:///croot/urllib3_1698257533958/work
uvicorn==0.25.0
websockets==11.0.3
XlsxWriter==3.1.2

4-3、模型下载

概述:在 /root/model 路径下新建 download.py 文件并在其中输入以下内容,并运行 python /root/model/download.py 执行下载

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm-xcomposer-7b', cache_dir='/root/model', revision='master')

4.4 代码准备

概述:在 /root/code git clone InternLM-XComposer 仓库的代码

cd /root/code
git clone https://gitee.com/internlm/InternLM-XComposer.git
cd /root/code/InternLM-XComposer
git checkout 3e8c79051a1356b9c388a6447867355c0634932d  # 最好保证和教程的 commit 版本一致

4.5 Demo 运行

在终端运行以下代码

cd /root/code/InternLM-XComposer
python examples/web_demo.py  \
    --folder /root/model/Shanghai_AI_Laboratory/internlm-xcomposer-7b \
    --num_gpus 1 \
    --port 6006

详情页如下所示
在这里插入图片描述

附录:

1、模型下载(Hugging Face)

使用huggingface-cli命令行工具安装

pip install -U huggingface_hub

然后新建文件,填入以下代码即可

import os
# 下载模型
# 将名为HF_ENDPOINT的环境变量设置为https://hf-mirror.com。即访问Hugging Face的镜像站点,而不是需要代理去访问Huggingface的官网。
# os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'

# resume-download:断点续下
# local-dir:本地存储路径。(linux 环境下需要填写绝对路径)
os.system('huggingface-cli download --resume-download internlm/internlm-chat-7b --local-dir your_path')

具体下载过程如下图所示
在这里插入图片描述

使用huggingface_hub来下载模型中的部分文件

import os 
# 将名为HF_ENDPOINT的环境变量设置为https://hf-mirror.com。即访问Hugging Face的镜像站点,而不是需要代理去访问Huggingface的官网。
# os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'

from huggingface_hub import hf_hub_download  # Load model directly 
hf_hub_download(repo_id="internlm/internlm-20b", filename="config.json")

Notice: 如果发生报错requests.exceptions.ProxyError,这个错误通常是由于代理服务器无法连接或超时引起的。把代码中的注释打开即可。下载成功截图如下所示:
在这里插入图片描述

参考文章:
读懂AI Agent:基于大模型的人工智能代理(转自知乎).
InternLM官方仓库


总结

代码比人更有温度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/299237.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

篇三:让OAuth2 server支持密码模式

由于Spring-Security-Oauth2停止维护&#xff0c;官方推荐采用 spring-security-oauth2-authorization-server&#xff0c;而后者默认不支持密码授权模式&#xff0c;本篇实战中采用的版本如下&#xff1a; <dependency><groupId>org.springframework.security<…

冒泡排序数据结构实验报告

实验目的&#xff1a; 理解冒泡排序算法的原理和基本思路。熟悉冒泡排序在实际应用中的场景和优化方法。 实验内容&#xff08;实验题目与说明&#xff09; 编写一个双向冒泡排序算法&#xff0c;即在排序过程中以交替的正、反两个方向进行遍历。若第一趟把关键字最大的记录…

2024年低压电工证模拟考试题库及低压电工理论考试试题

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2024年低压电工证模拟考试题库及低压电工理论考试试题是由安全生产模拟考试一点通提供&#xff0c;低压电工证模拟考试题库是根据低压电工最新版教材&#xff0c;低压电工大纲整理而成&#xff08;含2024年低压电工证…

7款实用的SQLite数据库可视化管理工具

前言 俗话说得好“工欲善其事&#xff0c;必先利其器”&#xff0c;合理的选择和使用可视化的管理工具可以降低技术入门和使用门槛。今天推荐7款实用的SQLite数据库可视化管理工具(GUI)&#xff0c;帮助大家更好的管理SQLite数据库。 什么是SQLite&#xff1f; SQLite是一个…

centos通过yum安装redis

1. 安装yum添加epel源(此步根据环境&#xff0c;如果有源则可跳过&#xff0c;在阿里去可跳过&#xff09; yum install epel-release 2 使用yum安装Redis yum install redis 出现如下图所示的内容 3 Redis配置 vim /etc/redis.conf :set number(显示行号) 61行&#x…

代码随想录-刷题第四十九天

121. 买卖股票的最佳时机 题目链接&#xff1a;121. 买卖股票的最佳时机 思路&#xff1a;动态规划五步曲 dp[i][0] 表示第i天持有股票所得最多现金&#xff0c;dp[i][1] 表示第i天不持有股票所得最多现金。 一开始现金是0&#xff0c;那么加入第i天买入股票&#xff0c;现金…

19道ElasticSearch面试题(很全)

1. elasticsearch的一些调优手段 1、设计阶段调优 &#xff08;1&#xff09;根据业务增量需求&#xff0c;采取基于日期模板创建索引&#xff0c;通过 roll over API 滚动索引&#xff1b; &#xff08;2&#xff09;使用别名进行索引管理&#xff1b; &#xff08;3&…

优雅的通过Shell脚本生成Go的程序包

概要 本文将介绍如何使用 Shell 脚本打包来优雅地生成Go的程序包。我们将创建一个简单的脚本&#xff0c;用于构建、测试和部署 Golang 项目。 前言 随着Go语言的普及&#xff0c;越来越多的开发人员选择使用Go编写代码。虽然越来越多的公司项目已使用持续集成/持续部署&…

android 倒计时控件

效果&#xff1a;&#xff08;可不设置 之前、之后文字&#xff09; /*** 倒计时秒数** desc : 时分秒倒计时view* * 布局里引用后&#xff0c;* private fun testMethod(){* binding.test.setCDownStarText("之前的文字")* binding.test.setCDo…

听GPT 讲Rust源代码--compiler(28)

File: rust/compiler/rustc_codegen_llvm/src/llvm/mod.rs 文件rust/compiler/rustc_codegen_llvm/src/llvm/mod.rs是Rust编译器的LLVM代码生成模块的一个文件。该文件定义了一些用于与LLVM交互的结构体、枚举和常量。 此文件的主要作用是&#xff1a; 定义编译器和LLVM之间的接…

03. BI - 详解机器学习神器 XGBoost

本文专辑 : 茶桁的AI秘籍 - BI篇 原文链接: https://mp.weixin.qq.com/s/kLEg_VcxAACy8dH35kK3zg 文章目录 集成学习XGBoost Hi&#xff0c;你好。我是茶桁。 学习总是一个循序渐进的过程&#xff0c;之前两节课的内容中&#xff0c;咱们去了解了LR和SVM在实际项目中是如何使…

【附源码】Java计算机毕业设计-图书管理系统

【附源码】Java计算机毕业设计-图书管理系统 &#x1f345; 作者主页 央顺技术团队 &#x1f345; 欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; &#x1f345; 文末获取源码联系方式 &#x1f4dd; 项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX…

linux的常用命令

目录 开机关机 获取帮助的Linux Linux的辅助快捷键 目录操作命令 文件操作命令 文件内容操作命令 查找命令 打包 解压缩 Vi文本编辑模式 命令模式下的操作键 光标的移动 翻页 单词健的快速跳转 行内快速跳转 行间快速跳转 当前页跳转 行号显示 删除 复制 …

智慧城管解决方案:方案全文43页,附下载

关键词&#xff1a;智慧城管建设方案&#xff0c;智慧城管平台系统&#xff0c;数字城管指挥中心&#xff0c;数字城管系统 一、智慧城管建设背景 1、城市管理需求&#xff1a;随着城市化进程的加速&#xff0c;城市管理面临着越来越多的挑战&#xff0c;如交通拥堵、环境污染…

VLM,LLM等大模型如何应用于机器人控制(以强化学习为例)

VLM&#xff1a;视觉语义模型&#xff0c;准确识别图中有什么&#xff0c;处于什么状态&#xff0c;以及不同物体之间的关联。 LLM&#xff1a;语言大模型&#xff0c;可以针对当前的环境&#xff0c;自动生成可执行的任务&#xff0c;或者将人类指令重新分成可执行的子任务。…

【STM32】PWR电源控制

1 PWR简介 PWR&#xff08;Power Control&#xff09;电源控制 PWR负责管理STM32内部的电源供电部分&#xff0c;可以实现可编程电压监测器和低功耗模式的功能 可编程电压监测器&#xff08;PVD&#xff09;可以监控VDD电源电压&#xff0c;当VDD下降到PVD阀值以下或上升到P…

普中STM32-PZ6806L开发板(资料收集...)

简介 逐渐收集一些开发过程中使用到的文档资料数据手册 DS18B20 数据手册 DS18B20 Datasheet 开发文档 STM32F1各种文档 https://www.st.com/en/embedded-software/stm32cubef1.html#documentation HAL库文档开发文档 你使用的HAL文档, 在STM32CubeMX生成过程的最下面有…

路由器02_静态路由DHCP

一、静态路由 &#xff11;、静态路由特点 由管理员手工配置&#xff0c;是单向的&#xff0c;缺乏灵活性 &#xff12;、默认路由 默认路由是一种比较特殊静态路由&#xff0c;一般用于末节&#xff08;末梢&#xff09;网络&#xff0c;直接指定目标为任何地方 二、静态…

idea2023连接gitee远程仓库

目录 1.在gitee创建远程仓库 2.在Idea里配置git 3.初始化本地仓库 4. 提交推送至远程仓库 注意&#xff1a;提前下好git工具、idea2023&#xff0c;注册gitee账号&#xff0c;本文不介绍 1.在gitee创建远程仓库 创建好后&#xff0c;复制远程仓库地址 2.在Idea里配置git ​ …

解决SlF4J配置冲突警告:【SLF4J: Class path contains multiple SLF4J providers】

1、问题背景 最近在启动Springboot的时候出现了SLF4J相关的报红警告&#xff0c;虽然是不影响程序运行&#xff0c;但是作为一个有着代码洁癖的人看的是真难受。 警告信息如下&#xff1a; SLF4J: Class path contains multiple SLF4J providers. SLF4J: Found provider [ch…