Java数据结构:1. 数据结构前置知识

文章目录

    • 一、初识数据结构
    • 二、初识集合框架
      • 1. 什么是集合框架
      • 2. 集合框架的重要性
      • 3. 背后所涉及的数据结构以及算法
    • 三、时间复杂度空间复杂度
      • 1. 算法效率
      • 2. 时间复杂度
        • (1)概念
        • (2)大O的渐进表示法
        • (3)推导大O阶方法
        • (4)常见时间复杂度计算举例
      • 3. 空间复杂度
        • (1)概念
        • (2)常见空间复杂度计算举例
    • 三、初识泛型
      • 1. 包装类
        • (1)概述
        • (2)装箱和拆箱
      • 2. 泛型
        • (1)什么是泛型?
        • (2)泛型语法
        • (3)泛型是如何编译的---擦除机制
        • (4)泛型的上界
        • (5)一个复杂的例子

一、初识数据结构

什么是数据结构?
数据结构是一门单独的学科,和语言没关系。
数据结构就是:数据+结构,结构是用来描述和组织数据的。总而言之,数据结构是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。
数据结构有很多种,所以我们描述和组织数据的方式有很多种,以便用来应对不同的场景来使用。
数组也能描述和组织数据,可以说数组是最简单的数据结构。

什么是集合类?
Java当中的集合类,其实就是被封装好的数据结构。

二、初识集合框架

1. 什么是集合框架

Java 集合框架 (Java Collection Framework) ,又被称为容器 container ,是定义在 java.util 包下的一组接口 interfaces和其实现类 classes 。

其主要表现为将多个元素 element 置于一个单元中,用于对这些元素进行快速、便捷的存储 store 、检索 retrieve 、管理 manipulate ,即平时我们俗称的增删查改 CRUD 。

例如,一副扑克牌(一组牌的集合)、一个邮箱(一组邮件的集合)、一个通讯录(一组姓名和电话的映射关系)等等。

类和接口总览
在这里插入图片描述
这张图描述了Java当中类与类、类与接口之间的关系。
【说明】
Java的集合类和关系,不一定只有上图,上图只是描述了部分重要的常见类。
重要的接口有4个:List、Queue、Set、Map其他的类都是实现了这些接口。

每个容器其实都是对某种特定数据结构的封装:

  1. Collection: 是一个接口,包含了大部分容器常用的一些方法;
  2. List: 是一个接口,规范了ArrayList 和 LinkedList中要实现的方法;
    ArrayList: 实现了List接口,底层为动态类型顺序表;
    LinkedList: 实现了List接口,底层为双向链表;
  3. Stack: 底层是栈,栈是一种特殊的顺序表;
  4. Queue: 底层是队列,队列是一种特殊的顺序表;
  5. Deque: 是一个接口;
  6. Set: 集合,是一个接口,里面放置的是K模型;
    HashSet: 底层为哈希桶,查询的时间复杂度为O(1);
    TreeSet: 底层为红黑树,查询的时间复杂度为O( log2 N),关于key有序的;
  7. Map: 映射,里面存储的是 K-V 模型的键值对;
    HashMap: 底层为哈希桶,查询时间复杂度为O(1);
    TreeMap: 底层为红黑树,查询的时间复杂度为O(log2N),关于key有序。

2. 集合框架的重要性

  1. 使用成熟的集合框架,有助于我们便捷、快速的写出高效、稳定的代码;
  2. 学习背后的数据结构知识,有助于我们理解各个集合的优缺点及使用场景。

3. 背后所涉及的数据结构以及算法

【相关Java知识】

  1. 泛型Generic
  2. 自动装箱 autobox 和自动拆箱 autounbox
  3. Object 的 equals 方法
  4. Comparable 和 Comparator 接口

【什么是算法】
算法(Algorithm):就是定义良好的计算过程,他取一个或者一组的值为输入,并产生出一个或一组作为输出。
简单的来说,算法就是一系列的计算步骤,用来将输入数据转化成输出结果。

算法和数据结构相辅相成!

三、时间复杂度空间复杂度

1. 算法效率

public static long Fib(int N){
	if(N < 3){
		return 1;
	}
		return Fib(N-1) + Fib(N-2);
}

上述求斐波那契数列的算法好还是不好,如何衡量一个算法的好坏呢?
这就引出了我们的算法效率。

算法效率分两种::第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度,而空间效率被称作空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间。
在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

复杂度的计算,不能只通过看代码来计算,还需要结合思想!

2. 时间复杂度

(1)概念

在计算机科学中,算法的时间复杂度是一个数学函数, 它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

(2)大O的渐进表示法

不是准确的,是渐进的,一般找的是执行此处最多的那个语句!!

// 请计算一下func1基本操作执行了多少次?
void func1(int N){
	int count = 0; 
	
	for (int i = 0; i < N ; i++) {
		for (int j = 0; j < N ; j++) {
			count++; //N*N
	}
}
	for (int k = 0; k < 2 * N ; k++) {
		count++; //2N
	}
	
	int M = 10;
	while ((M--) > 0) {
		count++; //10
	}
	
	System.out.println(count);
}

Func1 执行的基本操作次数 :
F(N) = N2 + 2 * N + 10

  • N = 10 F(N) = 130
  • N = 100 F(N) = 10210
  • N = 1000 F(N) = 1002010

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

(3)推导大O阶方法
  1. 用常数1取代运行时间中的所有加法常数(F(N)=3N2+2N+10 ⇒ F(N)=3N2+2N+1);
  2. 在修改后的运行次数函数中,只保留最高阶项( F(N)=3N2+2N+1 ⇒ F(N)=3N2);
  3. 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶(F(N)=3N2 ⇒ F(N)=N2)。

使用大O的渐进表示法以后,Func1的时间复杂度为:O(N2)

  • N = 10 F(N) = 100
  • N = 100 F(N) = 10000
  • N = 1000 F(N) = 1000000
    通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

对于复杂度来说存在最好、平均和最坏的情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
我们以后讨论复杂度的时候,默认说的都是最坏情况下。

例:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)。

(4)常见时间复杂度计算举例

【实例1】

// 计算func2的时间复杂度?
void func2(int N) {
	int count = 0;
	for (int k = 0; k < 2 * N ; k++) {
		count++; //2N
	}
	
	int M = 10;
	while ((M--) > 0) {
		count++; //10
	}
	System.out.println(count);
}

【答案】

基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为O(N)。

【实例2】

// 计算func3的时间复杂度?
void func3(int N, int M) {
	int count = 0;
	for (int k = 0; k < M; k++) {
		count++; //M
	}
	
	for (int k = 0; k < N ; k++) {
		count++; //N
	}
	
	System.out.println(count);
}

【答案】
此时M和N都属于问题规模。
基本操作执行了M+N次,通过推导大O阶方法知道,时间复杂度为O(M+N)。

【实例3】

// 计算func4的时间复杂度?
void func4(int N) {
	int count = 0;
	
	for (int k = 0; k < 100; k++) {
		count++; //100
	}
	
	System.out.println(count);
}

【答案】

基本操作执行了100次,通过推导大O阶方法知道,时间复杂度为O(1)。

【实例4】
时间复杂度的计算,一定要结合代码的思想,而不能单纯只看代码。

// 计算bubbleSort的时间复杂度?
void bubbleSort(int[] array) {
	for (int end = array.length; end > 0; end--) {
		boolean sorted = true;
		for (int i = 1; i < end; i++) {
			if (array[i - 1] > array[i]) {
				Swap(array, i - 1, i);
				sorted = false; 
	}
}
		if (sorted == true) {
		break;
	 	 }
	}
}

【解析】

	for (int end = array.length; end > 0; end--) {  //暂且把array.length看成N
		boolean sorted = true;
		for (int i = 1; i < end; i++) { 
		//end=N, i执行了N-1次
		//end--, end=N-1, i执行了N-2次
		//end--, end=N-2, i执行了N-3次
		//……
		//end--, end=2, i执行了1次
		//end--, end=1, i执行了0次
}

从上述代码可以看出,i 的执行次数为:
N-1 + N-2 + N-3 + ……+ 1 + 0 = 1/2 * (N2 - N),故通过推导大O阶方法知道,时间复杂度为O(N2),此时是最坏情况下。
最好情况下是O(N),就是至少比较了一轮。

【答案】
基本操作执行了1/2 * (N2 - N)次,通过推导大O阶方法知道,时间复杂度为O(N2)。

【实例5】

// 计算binarySearch的时间复杂度?(二分查找)
int binarySearch(int[] array, int value) {
	int begin = 0;
	int end = array.length - 1;
	
	while (begin <= end) {
		int mid = begin + ((end-begin) / 2); 
		if (array[mid] < value)
			begin = mid + 1;
		else if (array[mid] > value)
			end = mid - 1;
		else
			return mid;
	}
	return -1;
}

【解析】
二分查找最坏的情况是查找到最后一个数字才找到。
在这里插入图片描述
设一共砍了y次。
n / x = 1;
因为第一次是 n/2,第二次是n/4,所以第y次为 2 y = n。
故:y = log2N
所以基本操作执行了 log2N 次,通过推导大O阶方法知道,时间复杂度为O(log2N)。

【答案】

基本操作执行了log2N次,通过推导大O阶方法知道,时间复杂度为O(log2N)。

【实例6】

// 计算阶乘递归factorial的时间复杂度?
long factorial(int N) {
	return N < 2 ? N : factorial(N-1) * N;
}

【解析】
递归的时间复杂度 = 递归的次数 * 每次递归后执行的次数
所以由阶乘代码可知:递归了(N-1)次,每次递归后执行的都是三目运算符,所以每次递归后都执行了1次。
故基本操作执行了 N-1 次

【答案】

基本操作执行了 N-1 次,通过推导大O阶方法知道,时间复杂度为O(N)。

【实例7】

// 计算斐波那契递归fibonacci的时间复杂度?
int fibonacci(int N) {
	return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
}

当N=5时:
在这里插入图片描述
由图可以看出,可以将其类比成二叉树,所以:
在这里插入图片描述

这里可以理解为是二叉树,我们可以看到图中的二叉树并不是满的,因为时间复杂度是近似于,所以我们可以把他看成是一个满的。
所以递归一共执行了1+2+4+……+2N-1次,即20+21+22+2N-1,运用等比数列求和公式可得:递归一共执行了 2N-1 次。
递归的时间复杂度 = 递归的次数 * 每次递归后执行的次数
因为每次递归后执行的是三目运算符,为一次。
所以:基本操作执行了 2N-1次。

【答案】

基本操作执行了 2N-1次,通过推导大O阶方法知道,时间复杂度为O(2N)。

3. 空间复杂度

(1)概念

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度。空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟时间复杂度类似,也
使用大O渐进表示法

(2)常见空间复杂度计算举例

【例1】

// 计算bubbleSort的空间复杂度?
void bubbleSort(int[] array) {
	for (int end = array.length; end > 0; end--) {
		boolean sorted = true;
		for (int i = 1; i < end; i++) {
			if (array[i - 1] > array[i]) {
				Swap(array, i - 1, i);
				sorted = false;
	}
}
		if (sorted == true) {
			break;
}

【解析】
使用了常数个额外空间,所以其空间复杂度为O(1)。
【答案】
O(1)

【例2】

// 计算fibonacci的空间复杂度?
int[] fibonacci(int n) {
	long[] fibArray = new long[n + 1];
	fibArray[0] = 0;
	fibArray[1] = 1;
	for (int i = 2; i <= n ; i++) {
		fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
}
	return fibArray;
}

【解析】
求第N个斐波那契数字,long[] fibArray = new long[n + 1];它申请了一个比较长的数组,动态开辟了N个空间,空间复杂度为O(N)
【答案】
O(N)
【例3】

// 计算阶乘递归Factorial的空间复杂度?
long factorial(int N) {
	return N < 2 ? N : factorial(N-1)*N;
}

【解析】
每一次递归都会在栈上开辟空间,递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间,其空间复杂度为O(N)。
【答案】
O(N)

三、初识泛型

1. 包装类

(1)概述

在Java中,由于基本类型不是继承自Object,为了在泛型代码中可以支持基本类型,Java给每个基本类型都对应了一个包装类型。
也可以理解为我们希望基本类型也能面向对象,所以有了包装类。
在这里插入图片描述
除了 Integer 和 Character, 其余基本类型的包装类都是首字母大写。

(2)装箱和拆箱

【装箱和拆箱】

装箱:也叫装包,把基本类型的数据转变为引用类型。

Integer a = 10; //装包

int i = 99;
Integer b = i; //装包 

拆箱:将Integer对象中的值取出,放到一个基本数据类型中。

Integer a = 10;
int i = a;

【自动装箱和自动拆箱】

int i = 10;

Integer ii = i; // 自动装箱
Integer ij = (Integer)i; // 自动装箱


int j = ii; // 自动拆箱
int k = (int)ii; // 自动拆箱

【面试题】
下面代码输出什么?

public static void main(String[] args) {
	Integer a = 127;
	Integer b = 127;
	
	Integer c = 128;
	Integer d = 128;
	
	System.out.println(a == b);
	System.out.println(c == d);
}

//运行结果
true
false

分析:
赋值的时候在装包,装包的底层代码为
在这里插入图片描述
其中的low为-128,high为127,也就是在[-128,127]之间的256个数字可以存。

2. 泛型

(1)什么是泛型?

一般的类和方法,只能使用具体的类型:要么是基本类型,要么是自定义的类。如果要编写可以应用于多种类型的代码,这种刻板的限制对代码的束缚就会很大。
泛型:就是适用于许多类型,从代码上讲,就是对类型实现了参数化。

【引出泛型】
实现一个类,类中包含一个数组成员,使得数组中可以存放任何类型的数据,也可以根据成员方法返回数组中某个下标的值。

class MyArray {
    public Object[] array = new Object[10]; //定义一个可以存放任意数据类型的数组

    //默认放到数组的最后一个位置
    public void setValue(int pos,Object val) {
        array[pos] = val;
    }

    public Object getValue(int pos) {
        return array[pos];
    }

}
public class Test {
    public static void main(String[] args) {
        MyArray myArray = new MyArray();
        myArray.setValue(0,10);
        myArray.setValue(1,"hello");

        //String str = myArray.getValue(1); //报错
        String str = (String) myArray.getValue(1); //getValue返回Object,向上转型,这里是要强转
    }
}

上述代码,如果数组中元素很多,每次访问都要强转太麻烦。并且虽然在这种情况下,任何数组数据都可以存放,但是,更多情况下,我们还是希望他只能够持有一种数据类型,而不是同时持有这么多类型。所以,泛型的主要目的:就是指定当前的容器,要持有什么类型的对象。让编译器去做检查。 此时,就需要把类型,作为参数传递。需要什么类型,就传入什么类型!

//<T>当前类,是一个泛型类,它只是一个占位符
class MyArray<T> {
    //public T[] array = new T[10]; //不能new泛型类型的数组,泛型是编译时期存在的,当程序运行起来到JVM之后,就没有泛型的概念了。
    public Object[] array = new Object[10];
    //默认放到数组的最后一个位置
    public void setValue(int pos,T val) { //放元素时,放T类型
        array[pos] = val;
    }

    public T getValue(int pos) { //取元素时,也取T类型
        return (T)array[pos]; //把返回的类型,强转为指定的类型
    }
}
public class Test {
    public static void main(String[] args) {
        MyArray<Integer> myArray = new MyArray<>();
        myArray.setValue(0,10);

        MyArray<String> myArray1 = new MyArray<>();
        myArray1.setValue(1,"hello");

        String ret = myArray1.getValue(1);
    }
}

泛型实际上来说,就是将类型进行了传递!

(2)泛型语法

//定义一个泛型类引用
泛型类<类型实参> 变量名;
// 实例化一个泛型类对象
new 泛型类<类型实参>(构造方法实参);

如:

MyArray<Integer> list = new MyArray<Integer>();

注意:泛型只能接受类,所有的基本数据类型必须使用包装类!

(3)泛型是如何编译的—擦除机制

在这里插入图片描述
在编译过程中,将所有的T替换为Object这种机制,我们称为:擦除机制
所以JVM里不存在泛型,因为在运行的时候,泛型是编译时期存在的,当程序运行起来到JVM之后,就没有泛型这个概念了。

(4)泛型的上界

在定义泛型类时,有时需要对传入的类型变量做一定的约束,可以通过类型边界来约束。

【语法】

class 泛型类名称<类型形参 extends 类型边界> {
...
}

【例】

//T一定是Number或者Number的子类
class TestGeneric <T extends Number> {
//在Number里面有一些定义好的代码 
}

public class Test {
    public static void main(String[] args) {
        TestGeneric<Number> testGeneric1 = new TestGeneric<>();
        TestGeneric<Integer> testGeneric2 = new TestGeneric<>();
        TestGeneric<String> testGeneric3 = new TestGeneric<>(); //报错,因为String不是Numberde 子类,这就是泛型的上界
        
    }
(5)一个复杂的例子

写一个泛型类,求一个数组中的最大值。

//报错!!
class Alg<T>{
        public T findMaxValue(T[] array) {
            T max = array[0];
            for (int i = 1; i < array.length; i++) {
                if (array[i] > max) { //报错
                    max = array[i];
                }
            }
            return max;
    }

}

T一定是引用数据类型,最终被擦除为了Object类型,而Object类型一定是不能被比较的,而T类型,一定是可以被比较的。

问题:怎么能够约束,才能让T一定是可以比较大小的?
T实现Comparable接口
【方法一:泛型类】

class Alg<T extends Comparable>{
        public T findMaxValue(T[] array) {
            T max = array[0];
            for (int i = 1; i < array.length; i++) {
                if (max.compareTo(array[i]) < 0) { //max比array[i]大,返回>0,max比array[i]小,返回<0
                    max = array[i];
                }
            }
            return max;
    }
}

public class Test {
    public static void main(String[] args) {
        Alg<Integer> alg = new Alg<>();
        Integer[] integers = {1,2,3,4,5,6,7};
        Integer ret = alg.findMaxValue(integers);
        System.out.println(ret); //7
}

【方法二:泛型方法】

class Alg2 {
    public <T extends Comparable<T>> T findMaxValue(T[] array) {
        T max = array[0];
        for (int i = 1; i < array.length; i++) {
            if (max.compareTo(array[i]) < 0) { //max比array[i]大,返回>0,max比array[i]小,返回<0
                max = array[i];
            }
        }
        return max;
    }
}

public class Test {
    public static void main(String[] args) {
        Alg2 alg2 = new Alg2();
        Integer[] integers1 = {1,2,3,4,5};
        //类型推导:根据实参传值,来推导此时的类型
        Integer ret1 = alg2.findMaxValue(integers1);
        System.out.println(ret1);  //5
        }

【方法三:静态泛型方法】

class Alg2 {
    public static <T extends Comparable<T>> T findMaxValue(T[] array) {
        T max = array[0];
        for (int i = 1; i < array.length; i++) {
            if (max.compareTo(array[i]) < 0) { //max比array[i]大,返回>0,max比array[i]小,返回<0
                max = array[i];
            }
        }
        return max;
    }
}

public class Test {
    public static void main(String[] args) {
        Integer[] integers = {1,2,3,4,5,10};
        Integer ret = Alg2.<Integer>findMaxValue(integers);
        System.out.println(ret); //10
    }

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/299208.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

航空公司管理系统(迷你版12306)

要求 今天分享一个之前辅导留学生的作业&#xff0c;作业要求如下&#xff1a; Project E: Airways Management System Overall description: Your team is employed by an Airways company for the implementation of a computer system responsible for a large part of th…

Jmeter相关概念

Jmeter相关概念 jmeter性能指标 Aggregate Report 是 JMeter 常用的一个 Listener&#xff0c;中文被翻译为“聚合报告”。今天再次有同行问到这个报告中的各项数据表示什么意思&#xff0c;顺便在这里公布一下&#xff0c;以备大家查阅。 如果大家都是做Web应用的性能测试&a…

摄像头视频录制程序使用教程(Win10)

摄像头视频录制程序-Win10 &#x1f957;介绍&#x1f35b;使用说明&#x1f6a9;config.json 说明&#x1f6a9;启动&#x1f6a9;关闭&#x1f6a9;什么时候开始录制&#xff1f;&#x1f6a9;什么时候触发录制&#xff1f;&#x1f6a9;调参 &#x1f957;介绍 检测画面变化…

Django HttpResponse 响应对象

目录 一、概述二、测试三、属性和方法四、解读 request 参数 一、概述 所谓 HttpRequest 响应就是服务器返回给客户端的数据&#xff0c;HttpRequest 由程序员自己创建&#xff0c;一般他们通过两种方式来创建。 不使用模板&#xff0c;直接调用 HttpResponse()&#xff0c;返…

Activity启动流程

早就想写这个笔记用于记录这段知识&#xff0c;但是碍于太过庞大所以始终没有进行这段知识的整理 很多博客喜欢画一个时序图展示所有的流程&#xff0c;但是过于庞大&#xff0c;看起来有点吃力&#xff0c;这里我们画多个时序图来展示这个流程 1.app请求AMS启动Activity 在前…

高性能、可扩展、分布式对象存储系统MinIO的介绍、部署步骤以及代码示例

详细介绍 MinIO 是一款流行的开源对象存储系统&#xff0c;设计上兼容 Amazon S3 API&#xff0c;主要用于私有云和边缘计算场景。它提供了高性能、高可用性以及易于管理的对象存储服务。以下是 MinIO 的详细介绍及优缺点&#xff1a; 架构与特性&#xff1a; 开源与跨平台&am…

stm32引脚输入输出设置寄存器操作汇总

下图时正点原子i2c时使用的宏定义 下面的代码是对PA0-PH15的引进行了穷举法代码&#xff0c;使用的时候只需要拷贝三行相应的引脚即可。 //IO方向设置 #define IIC_SDA PAout(0) //SDA #define SDA_IN() {GPIOA->CRL&0XFFFFFFF0;GPIOA->CRL|(u32)8<<0…

复旦MBA :在多元共融中,探寻可持续发展和创新的魅力

复旦MBA的课堂从来不只在复旦校园&#xff1a;从中国到全球&#xff0c;从教室到企业&#xff0c;从每年Global Immersion Program(简称GIP)的美国耶鲁及MIT、UC Berkeley 、英国伦敦商学院、西班牙ESADE商学院、新加坡国立大学、韩国高丽大学等名校寒暑假课程&#xff0c;到Gl…

竞赛练一练 第26期:NOC大赛每日一练,scratch题目刷题第4天,包含答案解析

CIE一级2023.05_找食物 1. 准备工作 (1)添加背景:Jungle; (2)删除小猫角色,添加角色:Dog2、Donut; 2. 功能实现 (1)点击绿旗,小狗的初始位置在舞台左下角,面向右;甜甜圈的初始位置在舞台右下角; (2)等待1秒后,小狗从左下角向右走一段距离,走到甜甜圈边上…

centos通过yum 安装nginx和基本操作

Yum安装Nginx 1、配置Centos 7 Nginx Yum源仓库(注意系统版本要匹配&#xff0c;此步根据环境来确认&#xff0c;不是必须的&#xff09; rpm -Uvh http://nginx.org/packages/centos/7/noarch/RPMS/nginx-release-centos-7-0.el7.ngx.noarch.rpm 2、安装Nginx yum install n…

K8s-应用数据

应用数据 1 应用数据解析 k8s应用数据类型和步骤解析 k8s如何使用数据功能 k8s使用各种数据类型的配置 2 应用数据实践 emptyDir实践 资源对象文件内容 apiVersion: v1 kind: Pod metadata:name: sswang-emptydir spec:containers:- name: nginx-webimage: kubernetes-reg…

opencv006图像处理之仿射变换(旋转,缩放,平移)

空间变换中的仿射变换对应着五种变换&#xff0c;平移&#xff0c;缩放&#xff0c;旋转&#xff0c;翻转&#xff0c;错切。而这五种变化由原图像转变到变换图像的过程&#xff0c;可以用仿射变换矩阵进行描述。而这个变换过程可以用一个2*3的矩阵与原图进行相乘得到。关键就是…

性能分析与调优: Linux 实现 off-CPU剖析与火焰图

目录 一、实验 1.环境 2.off-CPU 剖析与火焰图 一、实验 1.环境 &#xff08;1&#xff09;主机 表1-1 主机 主机架构组件IP备注prometheus 监测 系统 prometheus、node_exporter 192.168.204.18grafana监测GUIgrafana192.168.204.19agent 监测 主机 node_exporter192.…

60天零基础干翻C++————初识C++

初识c 命名空间命名空间的定义命名空间的使用 输入输出流缺省参数引用引用定义常量的引用引用的使用场景做函数参数引用做返回值 命名空间 命名空间的定义 在c语言中会有下面问题 上述代码中&#xff0c;全局变量rand 可能会命名冲突&#xff0c;如下图 此时编译失败&…

C++ 中的指针和引用有什么区别?

C 中的指针和引用有什么区别&#xff1f; 在开始前我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「C的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“888”之后私信回复“888”&#xff0c;全部无偿共享给大家&#xff01;&#xff01;&#…

科技感十足界面模板

科技感界面 在强调简洁的科技类产品相关设计中&#xff0c;背景多数分为&#xff1a;颜色或写实图片两种。 颜色很好理解&#xff0c;大多以深色底为主。强调一种神秘感和沉稳感&#xff0c;同时可以和浅色的文字内容形成很好的对比。 而图片背景的使用&#xff0c;就要求其…

vue实现代码编辑器,无坑使用CodeMirror

vue实现代码编辑器,无坑使用CodeMirror vue实现代码编辑器,使用codemirror5 坑&#xff1a;本打算cv一下网上的&#xff0c;结果发现网上的博客教程都是错的&#xff0c;而且博客已经是几年前的了&#xff0c;我重新看了github上的&#xff0c;发现安装的命令都已经不一样了。我…

HTTP 代理原理及实现(二)

在上篇《HTTP 代理原理及实现&#xff08;一&#xff09;》里&#xff0c;我介绍了 HTTP 代理的两种形式&#xff0c;并用 Node.js 实现了一个可用的普通 / 隧道代理。普通代理可以用来承载 HTTP 流量&#xff1b;隧道代理可以用来承载任何 TCP 流量&#xff0c;包括 HTTP 和 H…

TypeScript基础(二)扩展类型-枚举及其位运算

✨ 专栏介绍 TypeScript是一种由微软开发的开源编程语言&#xff0c;它是JavaScript的超集&#xff0c;意味着任何有效的JavaScript代码都是有效的TypeScript代码。TypeScript通过添加静态类型和其他特性来增强JavaScript&#xff0c;使其更适合大型项目和团队开发。 在TypeS…

self-attention(上)李宏毅

B站视频链接 word embedding https//www.youtube.com/watch?vX7PH3NuYW0Q self-attention处理整个sequence&#xff0c;FC专注处理某一个位置的资讯&#xff0c;self-attention和FC可以交替使用。 transformer架构 self-attention的简单理解 a1-a4可能是input也可以作为中…