看图识熊(二)

使用Tools for AI封装onnx模型并推理

进行这一步之前,请确保已正确安装配置了Visual Studio 2017 和 Microsoft Visual Studio Tools for AI环境。

项目的代码也可以在这里找到,下面的步骤是带着大家从头到尾做一遍。

界面设计

创建Windows窗体应用(.NET Framework)项目,这里给项目起名ClassifyBear。

注意,项目路径不要包含中文。

在解决方案资源管理器中找到Form1.cs,双击,打开界面设计器。从工具箱中向Form中依次拖入控件并调整,最终效果如下图所示:

左侧从上下到依次是:

  • Label控件,将内容改为“输入要识别的图片地址:”

  • TextBox控件,可以将控件拉长一些,方便输入URL

  • Button控件,将内容改为“识别”

  • Lable控件,将label的内容清空,用来显示识别后的结果。因为label也没有边框,所以在界面看不出来。可以将此控件的字体调大一些,能更清楚的显示推理结果。

右侧的控件是一个PictureBox,用来预览输入的图片,同时,我们也从这个控件中取出对应的图片数据,传给我们的模型推理类库去推理。建议将控件属性的SizeMode更改为StretchImage,并将控件长和宽设置为同样的值,保持一个正方形的形状,这样可以方便我们直观的了解模型的输入,因为在前面查看模型信息的时候也看到了,该模型的输入图片应是正方形。

封装模型推理类库

由于目前模型推理用到的库只支持x64,所以这里需要将解决方案平台设置为x64。打开解决方案资源管理器,在解决方案上点右键,选择配置管理器。

在配置管理器对话框中,点开活动解决方案平台下拉框,选择新建

在新建解决方案平台对话框中,输入新平台名x64,点击确定即可

下面添加模型推理类库,再次打开解决方案资源管理器,在解决方案上点右键,选择添加,然后选择新建项目。

添加新项目对话框中,将左侧目录树切换到AI Tools下的Inference,右侧选择模型推理类库,下方填入项目名称,这里用Model作为名称。

确定以后会出现检查环境的进度条,耐心等待一会就可以出现模型推理类库创建向导对话框。

点击模型路径后面的浏览按钮,选择前面下载的BearModel.onnx模型文件。

注意,这里会出现几处错误提示,我们需要手动修复一下。首先会看到“发现不支持的张量的数据类型”提示,可以直接点确定。

确定后如果弹出“正在创建项目…”的进度条,一直不消失,这里只需要在类名后面的输入框内点一下,切换下焦点即可。

然后,我们来手动配置一下模型的相关信息。类名输入框中填入模型推理类的名字,这里用Bear。然后点击推理接口右侧的添加按钮,在弹出的编辑接口对话框中,随便起个方法名,这里用Infer。输入节点的变量名和张量名填入data,输出节点的变量名和张量名填入classLabel,字母拼写要和之前查看模型时看到的拼写一模一样。然后一路确定,再耐心等待一会,就可以在解决方案资源管理器看到新建的模型推理类库了。

至此,模型推理类库封装完成。

使用模型推理类库

首先添加对模型推理类库的引用,切换到解决方案资源管理器,在ClassifyBear项目的引用上点右键,选择添加引用。

在弹出的引用管理器对话框中,选择项目、解决方案,右侧可以看到刚刚创建的模型推理类库,勾选该项目,点击确定即可。

在Form1.cs上点右键,选择查看代码,打开Form1.cs的代码编辑窗口。

添加两个成员变量

// 使用Netron查看模型,得到模型的输入应为227*227大小的图片
private const int imageSize = 227;
​
// 模型推理类
private Model.Bear model;

回到Form1的设计界面,双击Form的标题栏,会自动跳转到代码页面并添加了Form1_Load方法,在其中初始化模型推理对象

private void Form1_Load(object sender, EventArgs e)
{
    // 初始化模型推理对象
    model = new Model.Bear();
}

回到Form1的设计界面,双击识别按钮,会自动跳转到代码页面并添加了button1_Click方法,在其中添加以下代码:

首先,每次点击识别按钮时都先将界面上显示的上一次的结果清除

// 识别之前先重置界面显示的内容
label1.Text = string.Empty;
pictureBox1.Image = null;
pictureBox1.Refresh();

然后,让图片控件加载图片

bool isSuccess = false;
try
{
    pictureBox1.Load(textBox1.Text);
    isSuccess = true;
}
catch (Exception ex)
{
    MessageBox.Show($"读取图片时出现错误:{ex.Message}");
    throw;
}

如果加载成功,将图片数据传给模型推理类库来推理。

if (isSuccess)
{
    // 图片加载成功后,从图片控件中取出227*227的位图对象
    Bitmap bitmap = new Bitmap(pictureBox1.Image, imageSize, imageSize);
​
    float[] imageArray = new float[imageSize * imageSize * 3];
​
    // 按照先行后列的方式依次取出图片的每个像素值
    for (int y = 0; y < imageSize; y++)
    {
        for (int x = 0; x < imageSize; x++)
        {
            var color = bitmap.GetPixel(x, y);
​
            // 使用Netron查看模型的输入发现
            // 需要依次放置227 *227的蓝色分量、227*227的绿色分量、227*227的红色分量
            imageArray[y * imageSize + x] = color.B;
            imageArray[y * imageSize + x + 1* imageSize * imageSize] = color.G;
            imageArray[y * imageSize + x + 2* imageSize * imageSize] = color.R;
        }
    }
​
    // 模型推理类库支持一次推理多张图片,这里只使用一张图片
    var inputImages = new List<float[]>();
    inputImages.Add(imageArray);
​
    // 推理结果的第一个First()是取第一张图片的结果
    // 之前定义的输出只有classLabel,所以第二个First()就是分类的名字
    label1.Text = model.Infer(inputImages).First().First();
}

注意,这里的数据转换一定要按照前面查看的模型的信息来转换,图片大小需要长宽都是227像素,并且要依次放置所有的蓝色分量、所有的绿色分量、所有的红色分量,如果顺序不正确,不能达到最佳的推理结果。

测试

编译运行,然后在网上找一张熊的图片,把地址填到输入框内,然后点击识别按钮,就可以看到识别的结果了。注意,这个URL应该是图片的URL,而不是包含该图片的网页的URL。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/298909.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ssm基于Java Web的怀旧唱片售卖系统论文

摘 要 传统办法管理信息首先需要花费的时间比较多&#xff0c;其次数据出错率比较高&#xff0c;而且对错误的数据进行更改也比较困难&#xff0c;最后&#xff0c;检索数据费事费力。因此&#xff0c;在计算机上安装怀旧唱片售卖系统软件来发挥其高效地信息处理的作用&#x…

k8s集群部署Harbor镜像仓库

部署k8s集群参考 https://blog.csdn.net/m0_59933574/article/details/134936188?spm1001.2014.3001.5502https://blog.csdn.net/m0_59933574/article/details/134936188?spm1001.2014.3001.5502 安装Harbor 准备一台干净服务器&#xff0c;关闭防火墙与selinux 下载dock…

探索 2024 年:未来可能带来的新奇事物

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

XML技术分析02

一、XML——树形结构 <?xml version"1.0" encoding"ISO-8859-1"?><note><to>George</to><from>John</from><heading>Reminder</heading><body>Dont forget the meeting!</body> </note…

LeetCode 42:接雨水

一、题目描述 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 示例 1&#xff1a; 输入&#xff1a;height [0,1,0,2,1,0,1,3,2,1,2,1] 输出&#xff1a;6 解释&#xff1a;上面是由数组 [0,1,0,2,1,0,…

LeetCode刷题--- 不同路径 II

个人主页&#xff1a;元清加油_【C】,【C语言】,【数据结构与算法】-CSDN博客 个人专栏 力扣递归算法题 http://t.csdnimg.cn/yUl2I 【C】 ​​​​​​http://t.csdnimg.cn/6AbpV 数据结构与算法 ​​​http://t.csdnimg.cn/hKh2l 前言&#xff1a;这个专栏主要讲述动…

Simply主题 简约风格的Emlog博客模板 响应式布局

主题介绍 Simply是一款简约风格的Emlog博客模板&#xff0c;响应式布局、界面简单大方&#xff0c;实用性强&#xff01; 支持夜间模式&#xff0c;采用localStorage存储配置。IOS系统下支持随系统自动切换浅/深色模式。 文章页支持显示文章字数及阅读时间。 支持http/https …

书摘:C 嵌入式系统设计模式 06

本书的原著为&#xff1a;《Design Patterns for Embedded Systems in C ——An Embedded Software Engineering Toolkit 》&#xff0c;讲解的是嵌入式系统设计模式&#xff0c;是一本不可多得的好书。 本系列描述我对书中内容的理解。本文章描述原书第 2 章的内容。 作为嵌入…

BetaFlight开源代码之电压校准

BetaFlight开源代码之电压校准 1. 源由2. 分析数据流3. 采样电路3. 原理4. 示例5. 实测&转换数据6. 参考资料 1. 源由 既然复杂的BetaFlight开源代码之电流校准都过了一遍&#xff0c;电压相对来说是比较简单的&#xff0c;一起过一下 2. 分析数据流 电源路径1》采样电路…

Pix2Seq 算法阅读记录

目录 前向传播过程 训练过程&#xff1a; 网络结构 前向传播过程 batch_preds--> tgt-->tgtcat(tgt, padding)-->tgt_embedding-->tgt_mask,tgt_padding_mask 以NLP的角度&#xff0c;tgt 代表了 词汇表的长度&#xff0c;encoder部分直接对图像进行处理&#…

优势演员-评论家算法 A2C

优势演员-评论家算法 A2C 优势演员-评论家算法 A2C主要思想目标函数 优势演员-评论家算法 A2C 前置知识&#xff1a;演员-评论家算法&#xff1a;多智能体强化学习核心框架 主要思想 AC 网络结构&#xff1a; 策略网络 - 演员: 这个网络负责根据当前的状态选择动作。它输出的是…

LabVIEW在指针式仪表读数中的应用

在LabVIEW环境中&#xff0c;为实现指针式仪表的自动读数&#xff0c;首先进行图像预处理&#xff0c;包括图像缩放、灰度化和二值化&#xff0c;以提高处理速度和减少噪声干扰。利用LabVIEW的图像处理功能&#xff0c;灰度化和二值化操作简化了图像的色彩信息&#xff0c;便于…

Java HashMap 面试题(一)

HashMap 面试题&#xff08;一&#xff09; 文章目录 HashMap 面试题&#xff08;一&#xff09;3.3 面试题-说一下HashMap的实现原理&#xff1f;面试题-HashMap的put方法的具体流程hashMap常见属性源码分析 3.3 面试题-说一下HashMap的实现原理&#xff1f; HashMap的数据结…

Mongodb删除操作中字符序对结果的影响

本文还是要从删除操作的语法说起。 db.collection.deleteMany(<filter>,{writeConcern: <document>,collation: <document>,hint: <document|string>} ) 删除语法中&#xff0c;可以指定数据写入策略&#xff0c;字符序和使用的索引字段。 字符序&a…

2024--Django平台开发-Web框架和Django基础(二)

day02 Web框架和Django基础 今日概要&#xff1a; 网络底层引入&#xff0c;到底什么是web框架&#xff1f;常见web框架对比django快速上手&#xff08;创建网站&#xff09;常见操作&#xff1a;虚拟环境、django项目、多app应用、纯净版逐点剖析&#xff1a;路由、视图、模…

mysql的分页查询

我们来看下一段查询&#xff1a; select * from sys_role; 如果我们要进行分页查询&#xff0c;例如每页显示两条数据&#xff0c;我们可以利用 limit 关键字&#xff1a; select * from sys_role limit 0,2; select * from sys_role limit 2,2; 假设我们当前页面为 n&#xf…

机器学习--ROC AUC

参考 机器学习-ROC曲线 - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/347470776一文看懂ROC、AUC - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/81202617 在了解之前&#xff0c;我们先来认识一下以下的概念 针对一个二分类问题&#xff0c;将实例分成正类(postive)或…

java基于SSM的游戏商城的设计与实现论文

基于SSM的游戏商城的设计与实现 摘 要 当下&#xff0c;正处于信息化的时代&#xff0c;许多行业顺应时代的变化&#xff0c;结合使用计算机技术向数字化、信息化建设迈进。以前相关行业对于游戏信息的管理和控制&#xff0c;采用人工登记的方式保存相关数据&#xff0c;这种以…

系统及应用安全

引导语 系统安全及应用是现代信息系统的核心组成部分&#xff0c;它不仅关乎信息安全&#xff0c;更直接影响到企业的运营效率、财务状况乃至品牌信誉。通过不断改进和强化系统的安全性&#xff0c;可以为企业创造一个更加可靠、高效的信息化环境。 一、账号安全的基本措施 …

狮子目标检测数据集VOC格式300张

狮子&#xff0c;作为“丛林之王”&#xff0c;以其威武雄壮的身姿和卓越的狩猎能力闻名于世。 狮子的体型健硕&#xff0c;毛发浓密&#xff0c;通常是金黄色或浅褐色&#xff0c;腹部和腿部的毛发相对较浅。狮子的头部特别大&#xff0c;长有一对威风凛凛的鬃毛&#xff0c;…