MongoDB索引详解

概述

索引是一种用来快速查询数据的数据结构。B+Tree 就是一种常用的数据库索引数据结构,MongoDB 采用 B+Tree 做索引,索引创建 colletions 上。MongoDB 不使用索引的查询,先扫描所有的文档,再匹配符合条件的文档。使用索引的查询,通过索引找到文档,使用索引能够极大的提升查询效率。
MongoDB 用的数据结构是 B-Tree,具体来说是 B+Tree,因为 B+Tree 是 B-Tree 的子集。

索引数据结构

B-Tree 说法来源于官方文档,然后就导致了分歧:有人说 MongoDB 索引数据结构使用的是 B-Tree,有的人又说是 B+Tree。

MongoDB 官方文档:https://docs.mongodb.com/manual/indexes/

image.png

WiredTiger官方文档:https://source.wiredtiger.com/3.0.0/tune_page_size_and_comp.html
WiredTiger maintains a table’s data in memory using a data structure called a B-Tree ( B+ Tree to be specific), referring to the nodes of a B-Tree as pages. Internal pages carry only keys. The leaf pages store both keys and values.

WiredTiger 数据文件在磁盘的存储结构:
image.png
B+Tree 中的 leaf page 包含一个页头(page header)、块头(block header)和真正的数据(key/value),其中页头定义了页的类型、页中实际载荷数据的大小、页中记录条数等信息;块头定义了此页的 checksum、块在磁盘上的寻址位置等信息。
WiredTiger 有一个块设备管理的模块,用来为 page 分配 block。如果要定位某一行数据(key/value)的位置,可以先通过 block 的位置找到此 page(相对于文件起始位置的偏移量),再通过 page 找到行数据的相对位置,最后可以得到行数据相对于文件起始位置的偏移量 offsets。

索引操作

创建索引

创建索引语法格式:

db.collection.createIndex(keys, options)

Key 值为你要创建的索引字段,1 按升序创建索引, -1 按降序创建索引。

Key 可选参数列表如下:

ParameterTypeDescription
backgroundBoolean建索引过程会阻塞其它数据库操作,background 可指定以后台方式创建索引,即增加 “background” 可选参数。 “background” 默认值为 false。
uniqueBoolean建立的索引是否唯一。指定为 true 创建唯一索引。默认值为 false。
namestring索引的名称。如果未指定,MongoDB 的通过连接索引的字段名和排序顺序生成一个索引名称。
dropDupsBoolean3.0+ 版本已废弃。在建立唯一索引时是否删除重复记录,指定 true 创建唯一索引。默认值为 false。
sparseBoolean对文档中不存在的字段数据不启用索引。这个参数需要特别注意,如果设置为 true 的话,在索引字段中不会查询出不包含对应字段的文档。默认值为 false。
expireAfterSecondsinteger指定一个以秒为单位的数值,完成 TTL 设定,设定集合的生存时间。
vindex version索引的版本号。默认的索引版本取决于 mongodb 创建索引时运行的版本。
weightsdocument索引权重值,数值在 1 到 99,999 之间,表示该索引相对于其他索引字段的得分权重。
default_languagestring对于文本索引,该参数决定了停用词及词干和词器的规则的列表。 默认为英语。
language_overridestring对于文本索引,该参数指定了包含在文档中的字段名,语言覆盖默认的 language,默认值为 language。

注意:3.0.0 版本前创建索引方法为 db.collection.ensureIndex()

# 创建索引后台执行
db.values.createIndex({open: 1, close: 1}, {background: true})
# 创建唯一索引
db.values.createIndex({title:1},{unique:true})

查看索引

# 查看索引信息
db.books.getIndexes()
# 查看索引键
db.books.getIndexKeys()

删除索引

# 删除集合指定索引
db.col.dropIndex("索引名称")
# 删除集合所有索引,不能删除主键索引
db.col.dropIndexes()

索引类型

与大多数数据库一样,MongoDB 支持各种丰富的索引类型,包括单键索引、复合索引,唯一索引等一些常用的结构。由于采用了灵活可变的文档类型,因此它也同样支持对嵌套字段、数组进行索引。通过建立合适的索引,我们可以极大地提升数据的检索速度。在一些特殊应用场景,MongoDB 还支持地理空间索引、文本检索索引、TTL 索引等不同的特性。

单键索引(Single Field Indexes)

在某一个特定的字段上建立索引。MongoDB 在 ID 上建立了唯一的单键索引,所以经常会使用 id 来进行查询。在索引字段上进行精确匹配、排序以及范围查找都会使用此索引。

db.books.createIndex({title:1})
# 对内嵌文档字段创建索引
db.books.createIndex({"author.name":1})

复合索引(Compound Index)

复合索引是多个字段组合而成的索引,其性质和单字段索引类似。但不同的是,复合索引中字段的顺序、字段的升降序对查询性能有直接的影响,因此在设计复合索引时则需要考虑不同的查询场景。

db.books.createIndex({type:1,favCount:1})
# 查看执行计划
db.books.find({type:"novel",favCount:{$gt:50}}).explain()

多键(数组)索引(Multikey Index)

在数组的属性上建立索引。针对这个数组的任意值的查询都会定位到这个文档,既多个索引入口或者键值引用同一个文档。

准备 inventory 集合:

db.inventory.insertMany([
{ _id: 5, type: "food", item: "aaa", ratings: [ 5, 8, 9 ] },
{ _id: 6, type: "food", item: "bbb", ratings: [ 5, 9 ] },
{ _id: 7, type: "food", item: "ccc", ratings: [ 9, 5, 8 ] },
{ _id: 8, type: "food", item: "ddd", ratings: [ 9, 5 ] },
{ _id: 9, type: "food", item: "eee", ratings: [ 5, 9, 5 ] }
])

创建多键索引:

db.inventory.createIndex( { ratings: 1 } )

多键索引很容易与复合索引产生混淆,复合索引是多个字段的组合,而多键索引则仅仅是在一个字段上出现了多键(multi key)。而实质上,多键索引也可以出现在复合字段上。

# 创建复合多值索引
db.inventory.createIndex( { item:1,ratings: 1 } )

注意:MongoDB 并不支持一个复合索引中同时出现多个数组字段。

嵌入文档的索引数组:

db.inventory.insertMany([
{
  _id: 1,
  item: "abc",
  stock: [
    { size: "S", color: "red", quantity: 25 },
    { size: "S", color: "blue", quantity: 10 },
    { size: "M", color: "blue", quantity: 50 }
  ]
},
{
  _id: 2,
  item: "def",
  stock: [
    { size: "S", color: "blue", quantity: 20 },
    { size: "M", color: "blue", quantity: 5 },
    { size: "M", color: "black", quantity: 10 },
    { size: "L", color: "red", quantity: 2 }
  ]
},
{
  _id: 3,
  item: "ijk",
  stock: [
    { size: "M", color: "blue", quantity: 15 },
    { size: "L", color: "blue", quantity: 100 },
    { size: "L", color: "red", quantity: 25 }
  ]
}
])

在包含嵌套对象的数组字段上创建多键索引:

db.inventory.createIndex( { "stock.size": 1, "stock.quantity": 1 } )

db.inventory.find({"stock.size":"S","stock.quantity":{$gt:20}}).explain()

Hash 索引(Hashed Indexes)

不同于传统的 B-Tree 索引,哈希索引使用 hash 函数来创建索引。在索引字段上进行精确匹配,但不支持范围查询,不支持多键 hash。Hash 索引上的入口是均匀分布的,在分片集合中非常有用。

db.users.createIndex({username : 'hashed'})

地理空间索引(Geospatial Index)

在移动互联网时代,基于地理位置的检索(LBS)功能几乎是所有应用系统的标配。MongoDB 为地理空间检索提供了非常方便的功能。地理空间索引(2dsphereindex)就是专门用于实现位置检索的一种特殊索引。

案例:MongoDB 如何实现“查询附近商家"?
假设商家的数据模型如下:

db.restaurant.insert({
    restaurantId: 0,
    restaurantName:"兰州牛肉面",
    location : {
        type: "Point",
        coordinates: [ -73.97, 40.77 ]
    }
})

创建一个 2dsphere 索引:

db.restaurant.createIndex({location : "2dsphere"})

查询附近 10000 米商家信息:

db.restaurant.find( { 
    location:{ 
        $near :{
            $geometry :{ 
                type : "Point" ,
                coordinates : [  -73.88, 40.78 ] 
            } ,
            $maxDistance:10000 
        } 
    } 
} )

$near 查询操作符,用于实现附近商家的检索,返回数据结果会按距离排序。
$geometry 操作符用于指定一个 GeoJSON 格式的地理空间对象,type=Point 表示地理坐标点,coordinates 则是用户当前所在的经纬度位置。
$maxDistance 限定了最大距离,单位是米。

全文索引(Text Indexes)

MongoDB 支持全文检索功能,可通过建立文本索引来实现简易的分词检索。

db.reviews.createIndex( { comments: "text" } )

t e x t 操作符可以在有 t e x t i n d e x 的集合上执行文本检索。 text 操作符可以在有 text index 的集合上执行文本检索。 text操作符可以在有textindex的集合上执行文本检索。text 将会使用空格和标点符号作为分隔符对检索字符串进行分词,并且对检索字符串中所有的分词结果进行一个逻辑上的 OR 操作。
全文索引能解决快速文本查找的需求,比如有一个博客文章集合,需要根据博客的内容来快速查找,则可以针对博客内容建立文本索引。

案例

数据准备:

db.stores.insert(
   [
     { _id: 1, name: "Java Hut", description: "Coffee and cakes" },
     { _id: 2, name: "Burger Buns", description: "Gourmet hamburgers" },
     { _id: 3, name: "Coffee Shop", description: "Just coffee" },
     { _id: 4, name: "Clothes Clothes Clothes", description: "Discount clothing" },
     { _id: 5, name: "Java Shopping", description: "Indonesian goods" }
   ]
)

创建 name 和 description 的全文索引:

db.stores.createIndex({name: "text", description: "text"})

测试:
通过 $text 操作符来查寻数据中所有包含“coffee”、“shop”、“java”列表中任何词语的商店:

db.stores.find({$text: {$search: "java coffee shop"}})

MongoDB 的文本索引功能存在诸多限制,而官方并未提供中文分词的功能,这使得该功能的应用场景十分受限。

通配符索引(Wildcard Indexes)

MongoDB 的文档模式是动态变化的,而通配符索引可以建立在一些不可预知的字段上,以此实现查询的加速。MongoDB 4.2 引入了通配符索引来支持对未知或任意字段的查询。

案例

准备商品数据,不同商品属性不一样:

db.products.insert([
    {
      "product_name" : "Spy Coat",
      "product_attributes" : {
        "material" : [ "Tweed", "Wool", "Leather" ],
        "size" : {
          "length" : 72,
          "units" : "inches"
        }
      }
    },
    {
      "product_name" : "Spy Pen",
      "product_attributes" : {
         "colors" : [ "Blue", "Black" ],
         "secret_feature" : {
           "name" : "laser",
           "power" : "1000",
           "units" : "watts",
         }
      }
    },
    {
      "product_name" : "Spy Book"
    }
])

创建通配符索引:

db.products.createIndex( { "product_attributes.$**" : 1 } )

测试:
通配符索引可以支持任意单字段查询 product_attributes 或其嵌入字段。

db.products.find( { "product_attributes.size.length" : { $gt : 60 } } )
db.products.find( { "product_attributes.material" : "Leather" } )
db.products.find( { "product_attributes.secret_feature.name" : "laser" } )

注意事项

  • 通配符索引不兼容的索引类型或属性

image.png

  • 通配符索引是稀疏的,不索引空字段。因此,通配符索引不能支持查询字段不存在的文档。
# 通配符索引不能支持以下查询
db.products.find( {"product_attributes" : { $exists : false } } )
db.products.aggregate([
  { $match : { "product_attributes" : { $exists : false } } }
])
  • 通配符索引为文档或数组的内容生成条目,而不是文档/数组本身。因此通配符索引不能支持精确的文档/数组相等匹配。通配符索引可以支持查询字段等于空文档{}的情况。
# 通配符索引不能支持以下查询:
db.products.find({ "product_attributes.colors" : [ "Blue", "Black" ] } )

db.products.aggregate([{
  $match : { "product_attributes.colors" : [ "Blue", "Black" ] } 
}])

索引属性

唯一索引(Unique Indexes)

在现实场景中,唯一性是很常见的一种索引约束需求,重复的数据记录会带来许多处理上的麻烦,比如订单的编号、用户的登录名等。通过建立唯一性索引,可以保证集合中文档的指定字段拥有唯一值。

# 创建唯一索引
db.values.createIndex({title:1},{unique:true})
# 复合索引支持唯一性约束
db.values.createIndex({title:1,type:1},{unique:true})
# 多键索引支持唯一性约束
db.inventory.createIndex( { ratings: 1 },{unique:true} )
  • 唯一性索引对于文档中缺失的字段,会使用 null 值代替,因此不允许存在多个文档缺失索引字段的情况。
  • 对于分片的集合,唯一性约束必须匹配分片规则。换句话说,为了保证全局的唯一性,分片键必须作为唯一性索引的前缀字段。

部分索引(Partial Indexes)

部分索引仅对满足指定过滤器表达式的文档进行索引。通过在一个集合中为文档的一个子集建立索引,部分索引具有更低的存储需求和更低的索引创建和维护的性能成本。3.2 新版功能。
部分索引提供了稀疏索引功能的超集,应该优先于稀疏索引。

db.restaurants.createIndex(
   { cuisine: 1, name: 1 },
   { partialFilterExpression: { rating: { $gt: 5 } } }
)

partialFilterExpression 选项接受指定过滤条件的文档:
等式表达式(例如:field: value 或使用 $eq 操作符)
$exists: true
$gt, $gte, $lt, $lte
$type
顶层的 $and

# 符合条件,使用索引
db.restaurants.find( { cuisine: "Italian", rating: { $gte: 8 } } )
# 不符合条件,不能使用索引
db.restaurants.find( { cuisine: "Italian" } )

唯一约束结合部分索引使用导致唯一约束失效的问题:
如果同时指定了 partialFilterExpression 和唯一约束,那么唯一约束只适用于满足筛选器表达式的文档。如果文档不满足筛选条件,那么带有惟一约束的部分索引不会阻止插入不满足惟一约束的文档。

稀疏索引(Sparse Indexes)

索引的稀疏属性确保索引只包含具有索引字段的文档的条目,索引将跳过没有索引字段的文档。
特性:只对存在字段的文档进行索引(包括字段值为 null 的文档)。

# 不索引不包含xmpp_id字段的文档
db.addresses.createIndex( { "xmpp_id": 1 }, { sparse: true } )

如果稀疏索引会导致查询和排序操作的结果集不完整,MongoDB 将不会使用该索引,除非 hint() 明确指定索引。

案例

数据准备:

db.scores.insertMany([
    {"userid" : "newbie"},
    {"userid" : "abby", "score" : 82},
    {"userid" : "nina", "score" : 90}
])

创建稀疏索引:

db.scores.createIndex( { score: 1 } , { sparse: true } )

测试:

# 使用稀疏索引
db.scores.find( { score: { $lt: 90 } } )

# 即使排序是通过索引字段,MongoDB也不会选择稀疏索引来完成查询,以返回完整的结果
db.scores.find().sort( { score: -1 } )

# 要使用稀疏索引,使用hint()显式指定索引
db.scores.find().sort( { score: -1 } ).hint( { score: 1 } )

同时具有稀疏性和唯一性的索引可以防止集合中存在字段值重复的文档,但允许不包含此索引字段的文档插入。

TTL索引(TTL Indexes)

在一般的应用系统中,并非所有的数据都需要永久存储。例如一些系统事件、用户消息等,这些数据随着时间的推移,其重要程度逐渐降低。更重要的是,存储这些大量的历史数据需要花费较高的成本,因此项目中通常会对过期且不再使用的数据进行老化处理。

通常的做法如下:
方案一:为每个数据记录一个时间戳,应用侧开启一个定时器,按时间戳定期删除过期的数据。
方案二:数据按日期进行分表,同一天的数据归档到同一张表,同样使用定时器删除过期的表。

对于数据老化,MongoDB 提供了一种更加便捷的做法:TTL(Time To Live)索引。TTL 索引需要声明在一个日期类型的字段中,TTL 索引是特殊的单字段索引,MongoDB 可以使用它在一定时间或特定时钟时间后自动从集合中删除文档。

# 创建 TTL 索引,TTL 值为3600秒
db.eventlog.createIndex( { "lastModifiedDate": 1 }, { expireAfterSeconds: 3600 } )

对集合创建 TTL 索引之后,MongoDB 会在周期性运行的后台线程中对该集合进行检查及数据清理工作。除了数据老化功能,TTL 索引具有普通索引的功能,同样可以用于加速数据的查询。

TTL 索引不保证过期数据会在过期后立即被删除。文档过期和 MongoDB 从数据库中删除文档的时间之间可能存在延迟。删除过期文档的后台任务每 60 秒运行一次。因此,在文档到期和后台任务运行之间的时间段内,文档可能会保留在集合中。

案例

数据准备:

db.log_events.insertOne( {
   "createdAt": new Date(),
   "logEvent": 2,
   "logMessage": "Success!"
} )

创建 TTL 索引:

db.log_events.createIndex( { "createdAt": 1 }, { expireAfterSeconds: 20 } )

可变的过期时间

TTL 索引在创建之后,仍然可以对过期时间进行修改。这需要使用 collMod 命令对索引的定义进行变更:

db.runCommand({collMod:"log_events",index:{keyPattern:{createdAt:1},expireAfterSeconds:600}})

使用约束

TTL 索引的确可以减少开发的工作量,而且通过数据库自动清理的方式会更加高效、可靠,但是在使用 TTL 索引时需要注意以下的限制:

  • TTL 索引只能支持单个字段,并且必须是非 _id 字段。
  • TTL 索引不能用于固定集合。
  • TTL 索引无法保证及时的数据老化,MongoDB 会通过后台的 TTLMonitor 定时器来清理老化数据,默认的间隔时间是 1 分钟。当然如果在数据库负载过高的情况下,TTL 的行为则会进一步受到影响。
  • TTL 索引对于数据的清理仅仅使用了 remove 命令,这种方式并不是很高效。因此 TTL Monitor 在运行期间对系统 CPU、磁盘都会造成一定的压力。相比之下,按日期分表的方式操作会更加高效。

隐藏索引(Hidden Indexes)

隐藏索引对查询规划器不可见,不能用于支持查询。通过对规划器隐藏索引,用户可以在不实际删除索引的情况下评估删除索引的潜在影响。如果影响是负面的,用户可以取消隐藏索引,而不必重新创建已删除的索引。4.4 新版功能。

# 创建隐藏索引
db.restaurants.createIndex({ borough: 1 },{ hidden: true });
# 隐藏现有索引
db.restaurants.hideIndex( { borough: 1} );
db.restaurants.hideIndex( "索引名称" )
# 取消隐藏索引
db.restaurants.unhideIndex( { borough: 1} );
db.restaurants.unhideIndex( "索引名称" ); 

案例

数据准备:

db.scores.insertMany([
    {"userid" : "newbie"},
    {"userid" : "abby", "score" : 82},
    {"userid" : "nina", "score" : 90}
])

创建隐藏索引:

db.scores.createIndex(
   { userid: 1 },
   { hidden: true }
)

查看索引信息:

db.scores.getIndexes()

索引属性 hidden 只在值为 true 时返回。
测试:

# 不使用索引
db.scores.find({userid:"abby"}).explain()
# 取消隐藏索引
db.scores.unhideIndex( { userid: 1} )
# 使用索引
db.scores.find({userid:"abby"}).explain()

索引使用建议

1)为每一个查询建立合适的索引
这个是针对于数据量较大比如说超过几十上百万(文档数目)数量级的集合。如果没有索引 MongoDB 需要把所有的 Document 从盘上读到内存,这会对 MongoDB 服务器造成较大的压力并影响到其他请求的执行。

2)创建合适的复合索引,不要依赖于交叉索引
如果你的查询会使用到多个字段,MongoDB 有两个索引技术可以使用:交叉索引和复合索引。交叉索引就是针对每个字段单独建立一个单字段索引,然后在查询执行时候使用相应的单字段索引进行索引交叉而得到查询结果。交叉索引目前触发率较低,所以如果你有一个多字段查询的时候,建议使用复合索引能够保证索引正常的使用。

# 查找所有年龄小于30岁的深圳市马拉松运动员
db.athelets.find({sport: "marathon", location: "sz", age: {$lt: 30}}})
# 创建复合索引
db.athelets.createIndex({sport:1, location:1, age:1})

3)复合索引字段顺序:匹配条件在前,范围条件在后(Equality First, Range After)
前面的例子,在创建复合索引时如果条件有匹配和范围之分,那么匹配条件(sport: “marathon”) 应该在复合索引的前面。范围条件(age: <30)字段应该放在复合索引的后面。

4)尽可能使用覆盖索引(Covered Index)
建议只返回需要的字段,同时,利用覆盖索引来提升性能。

5)建索引要在后台运行
在对一个集合创建索引时,该集合所在的数据库将不接受其他读写操作。对大数据量的集合建索引,建议使用后台运行选项 {background: true}

6)避免设计过长的数组索引
数组索引是多值的,在存储时需要使用更多的空间。如果索引的数组长度特别长,或者数组的增长不受控制,则可能导致索引空间急剧膨胀。

explain 执行计划

通常我们需要关心的问题:

  • 查询是否使用了索引
  • 索引是否减少了扫描的记录数量
  • 是否存在低效的内存排序

MongoDB 提供了 explain 命令,它可以帮助我们评估指定查询模型(querymodel)的执行计划,根据实际情况进行调整,然后提高查询效率。
explain() 方法的形式如下:

db.collection.find().explain(<verbose>)

verbose:可选参数,表示执行计划的输出模式,默认 queryPlanner

verbose 枚举如下:

**模式名字 **描述
queryPlanner执行计划的详细信息,包括查询计划、集合信息、查询条件、最佳执行计划、查询方式和 MongoDB 服务信息等。
exectionStats最佳执行计划的执行情况和被拒绝的计划等信息。
allPlansExecution选择并执行最佳执行计划,并返回最佳执行计划和其他执行计划的执行情况。

queryPlanner

# 未创建title的索引
db.books.find({title:"book-1"}).explain("queryPlanner")

结果:
image.png
字段说明:

**字段名称 **描述
plannerVersion执行计划的版本
namespace查询的集合
indexFilterSet是否使用索引
parsedQuery查询条件
winningPlan最佳执行计划
stage查询方式
filter过滤条件
direction查询顺序
rejectedPlans拒绝的执行计划
serverInfomongodb 服务器信息

executionStats

executionStats 模式的返回信息中包含了 queryPlanner 模式的所有字段,并且还包含了最佳执行计划的执行情况

# 创建索引
db.books.createIndex({title:1})

db.books.find({title:"book-1"}).explain("executionStats")

结果:
image.png
字段说明:

**字段名称 **描述
winningPlan.inputStage用来描述子 stage,并且为其父 stage 提供文档和索引关键字
winningPlan.inputStage.stage子查询方式
winningPlan.inputStage.keyPattern所扫描的 index 内容
winningPlan.inputStage.indexName索引名
winningPlan.inputStage.isMultiKey是否是 Multikey。如果索引建立在 array 上,将是 true
executionStats.executionSuccess是否执行成功
executionStats.nReturned返回的个数
executionStats.executionTimeMillis这条语句执行时间
executionStats.executionStages.executionTimeMillisEstimate检索文档获取数据的时间
executionStats.executionStages.inputStage.executionTimeMillisEstimate扫描获取数据的时间
executionStats.totalKeysExamined索引扫描次数
executionStats.totalDocsExamined文档扫描次数
executionStats.executionStages.isEOF是否到达 steam 结尾,1 或者 true 代表已到达结尾
executionStats.executionStages.works工作单元数,一个查询会分解成小的工作单元
executionStats.executionStages.advanced优先返回的结果数
executionStats.executionStages.docsExamined文档检查数

allPlansExecution

allPlansExecution 返回的信息包含 executionStats 模式的内容,且包含 allPlansExecution:[]

"allPlansExecution" : [
      {
         "nReturned" : <int>,
         "executionTimeMillisEstimate" : <int>,
         "totalKeysExamined" : <int>,
         "totalDocsExamined" :<int>,
         "executionStages" : {
            "stage" : <STAGEA>,
            "nReturned" : <int>,
            "executionTimeMillisEstimate" : <int>,
            ...
            }
         }
      },
      ...
   ]

stage 状态

**状态 **描述
COLLSCAN全表扫描
IXSCAN索引扫描
FETCH根据索引检索指定文档
SHARD_MERGE将各个分片返回数据进行合并
SORT在内存中进行了排序
LIMIT使用 limit 限制返回数
SKIP使用 skip 进行跳过
IDHACK对 _id 进行查询
SHARDING_FILTER通过 mongos 对分片数据进行查询
COUNTSCANcount 不使用 Index 进行 count 时的 stage 返回
COUNT_SCANcount 使用了 Index 进行 count 时的 stage 返回
SUBPLA未使用到索引的 $or 查询的 stage 返回
TEXT使用全文索引进行查询时候的 stage 返回
PROJECTION限定返回字段时候 stage 的返回

执行计划的返回结果中尽量不要出现以下 stage:

  • COLLSCAN(全表扫描)
  • SORT(使用 sort 但是无 index)
  • 不合理的 SKIP
  • SUBPLA(未用到 index 的 $or)
  • COUNTSCAN(不使用 index 进行 count)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/298334.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构】二叉树的概念及堆

前言 我们已经学过了顺序表、链表、栈和队列这些属于线性结构的数据结构&#xff0c;那么下面我们就要学习我们第一个非线性结构&#xff0c;非线性结构又有哪些值得我们使用的呢&#xff1f;那么接下来我们就将谈谈树的概念了。 1.树的概念与结构 1.1树的概念 树是一种非线性…

Microsoft edge@常见问题@由组织管理@策略组@版本问题

文章目录 本地edge浏览器由组织管理功能受限检查例:侧边栏功能被禁用解出限制(删除相关注册表条目)解除限制检查refs 页面加载问题this page having a problem 禁止edge更新refs 版本回滚 本地edge浏览器由组织管理功能受限检查 浏览器输入edge://management/检查通过修改注册表…

【数据仓库与联机分析处理】多维数据模型

目录 一、数据立方体 二、数据模型 &#xff08;一&#xff09;星形模型 &#xff08;二&#xff09;雪花模式 &#xff08;三&#xff09;事实星座模式 三、多维数据模型中的OLAP操作 &#xff08;一&#xff09;下钻 &#xff08;二&#xff09;上卷 &#xff08;三…

宏电股份5G RedCap终端产品助力深圳极速先锋城市建设

12月26日&#xff0c;“全城全网&#xff0c;先锋物联”深圳移动5G-A RedCap助力深圳极速先锋城市创新发布会举行&#xff0c;宏电股份携一系列5G RedCap终端产品应邀参与创新发布会&#xff0c;来自全国5G生态圈的各界嘉宾、专家学者济济一堂&#xff0c;共探信息化数字化创新…

mysql之视图mysql连接案例索引

文章目录 一、视图1.1 含义1.2 操作1.2.1 创建视图1.2.2 视图的修改1.2.3 删除视图1.2.4 查看视图 二、连接案例01)查询" 01 "课程比" 02 "课程成绩高的学生的信息及课程分数02)查询同时存在" 01 "课程和" 02 "课程的情况03&#xff0…

ios 裁剪拼装图片

//1.获取图片UIImage *image [UIImage imageNamed:"123.jpg"];//处理图片//2.获取图片的长度long length image.size.width/4;//3.图片顶点索引long indices[] {length * 2,length,//右 right0,length,//左 leftlength,0,//上 toplength,length * 2,//底 bottomle…

Rustdesk打开Win10 下客户端下面服务不会自启,显示服务未运行

环境: Rustdesk1.19 问题描述: Rustdesk打开Win10 下客户端下面服务不会自启,显示服务未运行 解决方案: 1.查看源代码 pub async fn start_all() {crate::hbbs_http::sync::start();let mut nat_tested = false;check_zombie()

SwinTransformer

patch embedding (b,3,224,224)->(b,N,96) N:patch数量 为每个stage中的每个Swin Transformer block设置drop_rate&#xff0c;根据设置[2,2,6,2]&#xff0c;每个Swin Transformer block的drop_path为0~0.1等间距采样的12个小数&#xff0c;参数0.1也可以更改。还有个drop参…

网络安全红队常用的攻击方法及路径

一、信息收集 收集的内容包括目标系统的组织架构、IT资产、敏感信息泄露、供应商信息等各个方面&#xff0c;通过对收集的信息进行梳理&#xff0c;定位到安全薄弱点&#xff0c;从而实施下一步的攻击行为。 域名收集 1.备案查询 天眼查爱企查官方ICP备案查询 通过以上三个…

数据矩阵集成可提高印刷电路板识别的准确性

在复杂的印刷电路板 (PCB) 世界中&#xff0c;准确的电路板元件识别对于简化故障排除至关重要。它确保电子设备高效运行。 本文将探讨数据矩阵码在提高 PCB 零件识别效率方面的作用。数据矩阵码提供了一种简单的解决方案来编码和解码与 PCB 组件相关的信息&#xff0c;在简化识…

安卓Android Studioy读写NXP ICODE2 15693标签源码

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?spma1z10.5-c-s.w4002-21818769070.11.4391789eCLwm3t&id615391857885 <?xml version"1.0" encoding"utf-8"?> <androidx.constraintlayout.widget.ConstraintLayout xm…

『C++成长记』日期类的实现

&#x1f525;博客主页&#xff1a;小王又困了 &#x1f4da;系列专栏&#xff1a;C &#x1f31f;人之为学&#xff0c;不日近则日退 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 目录 一、日期类的实现 &#x1f4d2;1.1日期类功能 &#x1f4d2;1.2拷贝日期 &#…

C++面试宝典第13题:计算餐厅账单

题目 假如你是一家餐厅的收银员,需要编写一个程序来计算顾客的账单。程序应该能够接受顾客点的菜品和数量,并根据菜品的单价计算出总价。另外,程序还应该能够处理折扣和优惠券,并输出最终的账单金额。 解析 这道题主要考察应聘者使用面向对象的设计方法来解决实际问题的能力…

基于旗鱼算法优化的Elman神经网络数据预测 - 附代码

基于旗鱼算法优化的Elman神经网络数据预测 - 附代码 文章目录 基于旗鱼算法优化的Elman神经网络数据预测 - 附代码1.Elman 神经网络结构2.Elman 神经用络学习过程3.电力负荷预测概述3.1 模型建立 4.基于旗鱼优化的Elman网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针…

Pandas DataFrame中将True/False映射到1/0

在本文中&#xff0c;我们将看到如何在Pandas DataFrame中将True/False映射到1/0。True/False到1/0的转换在执行计算时至关重要&#xff0c;并且可以轻松分析数据。 1. replace方法 在这个例子中&#xff0c;我们使用Pandas replace()方法将True/False映射到1/0。在这里&…

网络知识-以太网技术的发展及网络设备

目 录 一、背景介绍 &#xff08;一&#xff09;网络技术的时代 &#xff08;二&#xff09;以太网技术脱颖而出 二、以太网的工作原理 &#xff08;一&#xff09;、载波侦听多路访问&#xff08;CSMA/CD&#xff09; 1、数据发送流程 2、发送过程解析 3、…

Mathtype7.4安装与嵌入WPS

文章目录 Mathtype安装教程&#xff08;7.4&#xff09;Mathtype简介Mathtype下载安装软件下载软件安装运行MathType.exe运行注册表 Mathtype嵌入wps Mathtype安装教程&#xff08;7.4&#xff09; Mathtype简介 MathType是一款强大的数学公式编辑器&#xff0c;适用于教育教…

【Sublime Text】| 01——下载安装注册

系列文章目录 【Sublime Text】| 01——下载软件安装并注册 【Sublime Text】| 02——常用插件安装及配置 失败了也挺可爱&#xff0c;成功了就超帅。 文章目录 前言1. 下载2. 安装3. 注册3.1 通过修改应用程序注册3.2 通过替换应用程序注册 感谢 前言 轻量代码编辑器有很多 之…

Python课程设计基于python的人脸识别佩戴口罩系统设计

wx供重浩&#xff1a;创享日记 对话框发送&#xff1a;python口罩 获取完整论文报告源码源文件 1 研究背景与意义 新型冠状病毒展现出全球化流行和蔓延的趋势&#xff0c;这提醒我们&#xff1a;传染病防治在今后相当长时间内仍是疾病预测控制工作的重点。戴口罩是预防呼吸道…

Linux|服务器|简单记录备忘VMware虚拟机开启桌面失败报错:VMware: No 3D enabled (0, Success).的解决

一&#xff0c; VMware虚拟机 Linux操作系统&#xff0c;centos7版本&#xff0c;安装完桌面后&#xff0c;执行startx 命令后 &#xff0c;报错&#xff1a;VMware: No 3D enabled (0, Success). 桌面没有启动成功 完整日志输出如下&#xff1a; [rootnode4 ~]# startx x…