3D人体姿态估计(教程+代码)

3D人体姿态估计是指通过计算机视觉和深度学习技术,从图像或视频中推断出人体的三维姿态信息。它是计算机视觉领域的一个重要研究方向,具有广泛的应用潜力,如人机交互、运动分析、虚拟现实、增强现实等。
在这里插入图片描述

传统的2D人体姿态估计方法主要关注通过二维图像进行姿态推断,即从图像中提取人体关键点位置信息,然后根据这些关键点的空间关系推断出人体的姿态。然而,由于2D图像投影存在深度信息的缺失和模糊,2D姿态估计往往无法准确捕捉到人体的三维信息。

算法介绍

为了解决这个问题,研究者们开始探索使用深度学习技术进行3D人体姿态估计。深度学习技术能够学习到更高层次的特征表示,从而提高姿态估计的准确性。下面将对3D人体姿态估计的方法和技术进行简述。

  1. 单视角方法
    单视角方法是最常见的3D人体姿态估计方法之一。它通过从单个摄像机视角捕捉的图像中推断出人体的三维姿态。这种方法通常分为两个步骤:2D姿态估计和3D重建。
    在这里插入图片描述
代码获取、作业帮助、论文辅导:qq1309399183

在2D姿态估计阶段,深度学习模型被用于从输入图像中检测和定位人体关键点。这些关键点可以是人体的关节位置或特定身体部位的标记点。通过预测这些关键点的位置,可以得到人体在图像中的二维姿态信息。

然后,在3D重建阶段,使用将二维姿态信息与其他信息(如深度图像、摄像机参数等)结合起来,通过一些几何变换方法,将二维姿态信息转换为三维姿态信息。这些几何变换方法可以是透视投影、三角测量等。最终,通过这些步骤,我们可以得到人体的三维姿态。
在这里插入图片描述

  1. 多视角方法
    多视角方法利用从多个不同视角或摄像机捕捉的图像进行3D人体姿态估计。这种方法可以通过利用多个视角的互补信息来提高姿态估计的准确性。

在多视角方法中,首先通过单视角方法对每个摄像机视角的图像进行2D姿态估计。然后,通过使用多个视角的2D姿态信息,结合摄像机参数和几何约束,将2D姿态信息转换为3D姿态信息。

多视角方法的主要优势在于能够提供更多的观察角度和更多的几何信息,从而提高了姿态估计的准确性和稳定性。但同时,它也增加了系统的复杂性,需要进行多个视角的图像对齐和标定等步骤。

  1. 基于深度学习的方法
    近年来,基于深度学习的方法在3D人体姿态估计领域取得了显著的进展。这些方法利用深度学习模型对大规模数据集进行训练,从而学习到人体姿态的特征表示和模式。

基于深度学习的方法通常采用端到端的训练策略,即将输入图像作为模型的输入,直接输出人体的三维姿态。这种方法可以避免传统方法中的多个阶段处理,并且能够通过大规模数据集的训练来提高姿态估计的准确性。

基于深度学习的方法通常采用卷积神经网络(CNN)或循环神经网络(RNN)等深度学习模型进行姿态估计。这些模型通常使用3D姿态标注数据进行训练,以学习从图像到姿态的映射关系。

  1. 结合传感器的方法
    除了使用图像或视频作为输入,还可以结合其他传感器,如深度摄像机(如Microsoft Kinect)或惯性测量单元(IMU),来提高3D人体姿态估计的准确性和鲁棒性。

模型效果

在这里插入图片描述

深度摄像机可以提供人体的深度信息,从而帮助更准确地估计三维姿态。IMU可以提供人体的运动信息,从而帮助解决动态姿态估计的问题。

代码介绍

import torch
from torch.utils.data import DataLoader
from torchvision.transforms import Normalize

from openpose import OpenPoseModel, OpenPoseDataset

# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 模型路径和参数
model_path = "path_to_pretrained_model.pth"
input_size = (256, 256)
output_size = (64, 64)
num_joints = 17

# 加载模型
model = OpenPoseModel(num_joints=num_joints, num_stages=4, num_blocks=[1, 1, 1, 1]).to(device)
model.load_state_dict(torch.load(model_path))
model.eval()

# 数据集路径
dataset_path = "path_to_dataset"

# 数据预处理
normalize = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

# 加载数据集
dataset = OpenPoseDataset(dataset_path, input_size, output_size, normalize=normalize)
dataloader = DataLoader(dataset, batch_size=8, shuffle=True, num_workers=4)

# 测试模型
total_loss = 0
total_samples = 0

with torch.no_grad():
    for i, (images, targets) in enumerate(dataloader):
        images = images.to(device)
        targets = targets.to(device)

        # 前向传播
        outputs = model(images)
        
        # 计算损失
        loss = torch.mean((outputs - targets) ** 2)
        total_loss += loss.item() * images.size(0)
        total_samples += images.size(0)

    average_loss = total_loss / total_samples
    print("Average Loss: {:.4f}".format(average_loss))

结合传感器的方法通常需要进行传感器的标定和数据融合等步骤,以将不同传感器的信息相结合。这些方法可以提供更多的信息来源,从而提高姿态估计的准确性和鲁棒性。

总结

代码获取、作业帮助、论文辅导:qq1309399183
  • 总结起来,3D人体姿态估计是通过计算机视觉和深度学习技术从图像或视频中推断出人体的三维姿态信息。
  • 它可以通过单视角方法、多视角方法、基于深度学习的方法和结合传感器的方法来实现。
  • 随着深度学习技术的不断发展和硬件设备的提升,3D人体姿态估计将在很多领域中得到广泛应用,为人机交互、运动分析、虚拟现实等领域带来更多可能性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/297944.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

递归问题示例

斐波那契数列 f ( n ) { 1 n 1 1 n 2 f ( n − 1 ) f ( n − 2 ) n > 2 1 , 1 , 2 , 3 , 5 , 8 . . . \begin{aligned} f(n)\begin{cases}1&n1\\ 1&n2\\ f(n-1)f(n-2)&n\gt2 \end{cases}\\ 1,1,2,3,5,8\quad ... \end{aligned} f(n)⎩ ⎨ ⎧​11f(n−1)f(n−…

CMU15-445-Spring-2023-Project #1 - Buffer Pool

前置知识,参考上一篇博客:CMU15-445-Spring-2023-Project #1 - 前置知识(lec01-06) 在存储管理器中实现缓冲池。缓冲池负责将物理页从主内存来回移动到磁盘。它允许 DBMS 支持大于系统可用内存量的数据库。缓冲池的操作对系统中的…

spring boot 集成邮件发送功能

一、首先到QQ邮箱申请开启POP3、SMTP协议 二、安装依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-mail</artifactId></dependency><dependency><groupId>org.springframew…

【漏洞挖掘】挖掘CNVD证书

文章目录 一、CNVD介绍事件型漏洞通用型漏洞 二、挖掘思路1. 黑盒测试资产搜集fofa API筛选脚本 2. 白盒测试代码审计 3. google hack注意事项 一、CNVD介绍 国家信息安全漏洞共享平台&#xff08;简称CNVD&#xff09;&#xff0c;对于白帽子来说&#xff0c;挖掘的漏洞提交后…

关于谷歌Gemini大模型

2023年12月7日&#xff0c;谷歌AI宣布发布新一代基于Transformer架构的大模型Gemini。 Gemini的名字来源于双子座&#xff0c;象征着模型的双重性质&#xff1a; 一方面&#xff0c;它是一个强大的训练模型&#xff0c;可以在各种下游任务上进行微调&#xff0c;如文本摘要、机…

MiniTab的宏基础知识

什么是宏&#xff1f; 宏是包含一系列 Minitab 会话命令的文本文件。可以使用宏自动执行重复性任务&#xff08;例如&#xff0c;生成月度报表&#xff09;或扩展 Minitab 的功能&#xff08;例如&#xff0c;计算特殊检验统计量&#xff09;。 Minitab 提供以下类型的宏&…

计算机毕业设计选题分享-SSM律师事务所业务管理系统01664(赠送源码数据库)JAVA、PHP,node.js,C++、python,大屏数据可视化等

SSM律师事务所业务管理系统 摘 要 随着科学技术的飞速发展&#xff0c;社会的方方面面、各行各业都在努力与现代的先进技术接轨&#xff0c;通过科技手段来提高自身的优势&#xff0c;律师事务所业务管理系统当然也不能排除在外。律师事务所业务管理系统是以实际运用为开发背景…

CodeWave智能开发平台--03--目标:应用创建--04自定义主题样式5子页面页面跳转逻辑

摘要 本文是网易数帆CodeWave智能开发平台系列的第07篇&#xff0c;主要介绍了基于CodeWave平台文档的新手入门进行学习&#xff0c;实现一个完整的应用&#xff0c;本文主要完成04自定义主题样式5子页面页面跳转逻辑 参考:新手训练营-PC端应用 CodeWave智能开发平台的07次接…

NVIDIA Jetpack6.0DP使用过程中的问题

Jetpack6.0DP是2023年12月才发布&#xff0c; 操作系统使用了ubuntu 22.04&#xff0c; gcc是11.4&#xff0c;版本都很高&#xff0c; 用起来还存在一些问题 无法使用jtop https://forums.developer.nvidia.com/t/jtop-no-longer-works-on-jp-6-0-dp/275215 使用$ sudo -H p…

【JAVA】OPENGL+TIFF格式图片,不同阈值旋转效果

有些科学研究领域会用到一些TIFF格式图片&#xff0c;由于是多张图片相互渐变&#xff0c;看起来比较有意思&#xff1a; import java.io.IOException; import java.text.SimpleDateFormat; import java.util.Date; import java.util.logging.*;/*** 可以自已定义日志打印格式…

Oracle数据库新手零基础入门,Oracle安装配置和操作使用详解

一、教程描述 本套教程是专门为初学者量身定制的&#xff0c;无需任何Oracle数据库基础&#xff0c;课程采用循序渐进的教学方式&#xff0c;从Oracle数据库的基础知识开始讲起&#xff0c;并不会直接涉及到一项具体的技术&#xff0c;而是随着课程的不断深入&#xff0c;一些…

基于python的leetcode算法介绍之动态规划

文章目录 零 算法介绍一 例题介绍 使用最小花费爬楼梯问题分析 Leetcode例题与思路[118. 杨辉三角](https://leetcode.cn/problems/pascals-triangle/)解题思路题解 [53. 最大子数组和](https://leetcode.cn/problems/maximum-subarray/)解题思路题解 [96. 不同的二叉搜索树](h…

自动驾驶预测-决策-规划-控制学习(4):预测分析文献阅读

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、摘要分析1.Transformer模型是什么&#xff1f;什么是自注意力机制&#xff1f; 2.数据集是什么&#xff1f;3.预测车辆行驶轨迹和车辆换道意图4. LSTM 网络…

Pytest成魔之路 —— fixture 之大解剖!

1. 简介 fixture是pytest的一个闪光点&#xff0c;pytest要精通怎么能不学习fixture呢&#xff1f;跟着我一起深入学习fixture吧。其实unittest和nose都支持fixture&#xff0c;但是pytest做得更炫。 fixture是pytest特有的功能&#xff0c;它用pytest.fixture标识&#xff0c…

MybatisPlus—快速入门

目录 1.使用MybatisPlus的基本步骤 1.1引入MybatisPlus的起步依赖 1.2 定义Mapper 2.MybatisPlus常用注解 2.1 TableName 2.2 TableId 2.3 TableField 2.4 小结 3. 常用配置 4. 总结 1.使用MybatisPlus的基本步骤 1.1引入MybatisPlus的起步依赖 MyBatisPlus官方提…

如何使用 NFTScan NFT API 在 PlatON 网络上开发 Web3 应用

PlatON 是由万向区块链和矩阵元主导开发的面向下一代的全球计算架构&#xff0c;创新性的采用元计算框架 Monad 和基于 Reload 覆盖网络的同构多链架构&#xff0c;其愿景是成为全球首个提供完备隐私保护能力的运营服务网络。它提供计算、存储、通讯服务&#xff0c;并提供算力…

软件测试|什么是Python构造方法,构造方法如何使用?

构造方法&#xff08;Constructor&#xff09;是面向对象编程中的重要概念&#xff0c;它在创建对象时用于初始化对象的实例变量。在Python中&#xff0c;构造方法是通过特殊的名称__init__()来定义的。本文将介绍Python构造方法的基本概念、语法和用法。 什么是构造方法&…

React使用动态标签名称

最近在一项目里&#xff08;React antd&#xff09;遇到一个需求&#xff0c;某项基础信息里有个图标配置&#xff08;图标用的是antd的Icon组件&#xff09;&#xff0c;该项基础信息的图标信息修改后&#xff0c;存于后台数据库&#xff0c;后台数据库里存的是antd Icon组件…

ArkTS - 网络请求

一、Axios请求 应用通过HTTP发起一个数据请求&#xff0c;支持常见的GET、POST、OPTIONS、HEAD、PUT、DELETE、TRACE、CONNECT方法。 前端开发肯定都使用过一个叫axios的第三方库&#xff0c;它是是一个基于 promise 的网络请求库&#xff0c;可以用于浏览器和 node.js&…

Rust 字符串 初步了解

rust 的字符串 。字符串不是复合类型&#xff0c; String 和 &str &#xff1a; String 具有所有权&#xff0c;是存储在堆上的。&str 没有所有权&#xff0c;是对 String 的引用。字符串字面量也是 &str 类型&#xff0c;存储在栈上。 切片&#xff08;slice&a…