云计算历年题整理

第一大题

第一大题计算

给出计算连接到EC2节点的EBS的高可用性(HA)的数学公式,如场景中所述;计算EC2节点上的EBS的高可用性(HA);场景中80%的AWS EC2节点用于并行处理,总共有100个虚拟中央处理单元(vCPUs)用于处理数据,使用固定工作负载和缩放工作负载来计算AWS EC2系统的系统效率(固定和缩放效率)。

利用上述资料,分别以“固定工作量”和“扩展工作量”计算该电子商务集群的两个系统效率;如果该电子商务公司使用的集群平均平均恢复时间(MTTR)为96小时,总平均故障时间(MTTF)为900天,计算集群的高可用性(HA)

一个Amazon AWS EC2 集群包含300个vCPUs。如果这些处理器的80%用于并行执行计算和处理活动,计算:使用“固定工作负载”和“扩展工作负载”的AWS EC2集群的系统效率(两个单独的计算);上面描述的AWS EC2集群还有一个为集群提供HA的AWS S3,如果集群的总平均故障间隔时间(MTTF)为500天,平均平均修复时间(MTTR)为2.5天,则计算集群的系统可用性

第一大题n个xx(只答若干个短语)

列出四种云部署模型(该题出现2次)

描述管理虚拟集群的四种方法(W1D2)

 讨论四种类型的云计算部署模型,并在每种情况下描述Security和Trust的问题

描述私有云和公共云部署模型之间的三个区别(W1D1)

描述两种类型的可伸缩性度量,以及在此场景中可能出现的问题:一家银行决定在其现有的银行应用程序中添加一个新的客户关系管理(CRM)功能,还在两个国家开设了新的分行,这些新分行将使用相同的应用程序。

第一、二大题描述名词

第一大题和第二大题的描述名词雷同所以放一起,但第三、四大题也有很多来源于前两周

第一大题描述名词

描述计算机网络中的数据完整性和数据机密性(该题出现2次)

描述 AWS CloudFront

描述AWS Regions和AWS Zones

AWS VPC的公网子网CIDR为20.0.2.0/20,计算IP数量地址,写出子网可以拥有的最大EC2实例。

描述AWS可信顾问(W1D3)

 第二大题描述名词

描述Amazon CloudWatch和AWS CloudTrail

描述模型视图控制器(MVC)和前端控制器设计模式,为这两种设计模式在实际应用中的应用分别举出一个例子

第二大题

第二大题CUDA代码

关于GPU和CUDA:简要说明在CUDA C编程模型中使用的五个主要步骤,以解决基于主机和设备组件的GPU编程架构的异构性质;编写一个简单的CUDA C程序,打印“欢迎来到GPU编程世界!”使用myGPUKernel()作为CUDA C程序的内核名称,并使用<<< >>>分隔符启动它,以打印消息“欢迎来到GPU编程世界!”并行五次(不要使用任何C迭代循环命令)。

编写一个GPU CUDA C程序,内核名为“add”,添加两个整数变量a和显示程序将与主机(CPU)和设备(GPU)通信的所有步骤,包括内存管理活动(可以随意使用更多变量)。

关于GPU和CUDA:描述使用CUDA平台编写GPU的三种方法;描述GPU CUDA计算或编程中异构计算的两个特性。

两个特性找不到原文,下面三选一吧

第二大题经济计算

根据上述公司收支的描述,计算资本支出(CAPEX)和运营费用;假设公司可以通过在AWS市场上向客户出租资产来收回所有的资本支出,估算一下如果公司将其基础设施迁移到云端可以节省多少成本。

关于云经济的:用图表分别描述计算传统IT成本和云计算成本的两种算法/数学模型;如果一个传统IT系统的总成本为50万英镑,那么它的前期资本成本为30万英镑,用云计算代替传统IT模式的成本是多少?

第三大题

第三大题Map/Reduce项目涉及代码

下列Map/Reduce伪代码的结果是什么?解释它并举例说明映射器/还原器之间的信息交换

编写一个Map/Reduce Java程序来计算每个事件类别中最受欢迎的事件(即最常预订的古典音乐会,爵士音乐会,流行音乐会等)。包括注释来解释代码的作用。您还可以使用伪代码来编写规范,或者用图表来说明输入、映射、减少和输出块之间的数据流。

// 定义Booking Reservation类
class BookingReservation {
    String eventID;
    String userID;
    String eventCategory;
    String action;
    Date time;

    // 构造函数和访问方法

    // 省略其他方法和字段
}

// Map阶段
class MapClass extends Mapper<Object, Text, Text, BookingReservation> {
    public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
        // 解析日志行
        BookingReservation reservation = parseLog(value.toString());

        // 输出键值对,以事件类别作为键
        context.write(new Text(reservation.eventCategory), reservation);
    }

    private BookingReservation parseLog(String log) {
        // 解析日志行并创建BookingReservation对象
        // 省略实现细节
    }
}

// Reduce阶段
class ReduceClass extends Reducer<Text, BookingReservation, Text, Text> {
    public void reduce(Text key, Iterable<BookingReservation> values, Context context) throws IOException, InterruptedException {
        // 使用computeMax方法计算每个事件类别中最受欢迎的事件
        BookingReservation mostPopularEvent = computeMax(values);

        // 输出结果,以事件类别作为键
        context.write(key, new Text(mostPopularEvent.getEventID()));
    }

    private BookingReservation computeMax(Iterable<BookingReservation> values) {
        // 实现computeMax方法,返回列表中最常见的事件
        // 省略实现细节
    }
}

// 配置和运行Map/Reduce任务
public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    Job job = Job.getInstance(conf, "PopularEvents");
    job.setJarByClass(YourClassName.class);

    job.setMapperClass(MapClass.class);
    job.setReducerClass(ReduceClass.class);

    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(Text.class);

    // 设置输入和输出路径
    FileInputFormat.addInputPath(job, new Path("inputPath"));
    FileOutputFormat.setOutputPath(job, new Path("outputPath"));

    System.exit(job.waitForCompletion(true) ? 0 : 1);
}

第三大题计算(主要是阿姆达尔定律)

关于Map/Reduce的性能:定义并行计算中的加速概念;使用Amdahl定律,计算用10个处理器运行此作业时可实现的最大加速,注意8%的计算作业必须顺序执行。

关于Map/Reduce的性能:描述阿姆达尔定律,以及顺序计算和并行计算之间的区别。说出Hadoop中必须按顺序执行的一个阶段;如果95%的计算作业必须顺序执行,那么在跨8个处理器运行该作业时可实现的最大加速是多少?同样,对于同一个作业,当跨1000个处理器运行该作业时,可实现的最大加速是多少?用阿姆达尔定律来回答

描述Flynn对计算机体系结构的四种分类。(W1D1)用阿姆达尔定律计算提高使用10个处理器并行运行20%应用程序的系统的性能速度

在该场景中,Hadoop使用10个mapper和2个reducer来完成计算,每个Mapper发出多少中间键:值对?有多少唯一的键被馈送到每个Reducer?

(待完成)

第三大题也与map有关但不是代码和计算

涉及到Map/Reduce的Combiner:什么是Combiner,用处?它和减速器有什么不同?使用组合器是可选的还是强制的;简要说明组合器必须遵守的两条规则。

关于Map-Reduce的数据过滤:Map-Reduce作业中数据过滤的目的是什么?给出一个数据过滤的例子;为什么数据过滤是“Mapper唯一的工作”?

第三大题HDFS描述

涉及Hadoop计算作业执行:用箭头(→)连接Hadoop计算任务对应负责的守护进程

关于Hadoop分布式文件系统的:NameNode在HDFS中的职责是什么;用合适的图表解释HDFS的写操作(例如,如何创建一个新文件并将数据写入HDFS);为什么HDFS默认为每个块存储三个单独的副本?为什么在大型集群中将三个副本分散到不同的物理机架上是有用的?

关于分布式处理系统的弹性:在分布式系统的背景下,什么是“五九可用性”?请解释这与“单点故障”的概念之间的关系,以及这可能对分布式系统产生的负面影响;HDFS (Hadoop Distributed File System)如何检测数据块损坏;如果Map任务中的一个失败,Map/Reduce作业是否会完成?应用程序主机和节点管理器如何检测Map任务的失败并对其作出反应?

啥玩意儿啊没有原文

第四大题

第四大题DNS描述

什么是内容交付网络中的DNS缓存?DNS缓存的两个好处。

与内容交付网络(cdn)有关:什么是内容分发网络(CDN)?解释内容交付网络是如何工作的;cdn中的DNS重定向是什么?简要解释不同的DNS重定向类型及其优缺点;点对点(P2P)网络是什么?解释P2P网络相对于客户机-服务器网络的三个好处。

第四大题数据库描述

 关于Map/Reduce之外的大数据平台:什么是内存处理?讨论Hadoop Map/Reduce与现代内存处理系统(如Apache Spark)相比的的主要性能限制,用一个例子说明两者的区别;在Apache Spark的背景下,什么是弹性分布式数据集(RDD) ?解释两种类型的RDD操作,并为每种操作提供一个示例,例如,如何通过编程操作创建和修改RDD。

与云数据库有关:解释以下这些用于实现数据分区和复制的技术:内存缓存、读写分离、High可用性、集群和数据分片;SQL数据库以牺牲分区为代价提供了强一致性和可用性,而不同的NoSQL数据库采用不同的基于cap的权衡,那么亚马逊发电机系统做了哪些权衡?

与云数据库有关:为什么在云数据库中使用数据分区和复制很重要;在数据访问上下文中解释强一致性和最终一致性之间的区别,用例子来解释

关于分布式云数据库的:解释NoSQL数据库与传统关系数据库的区别,请在ACID事务属性上下文中解释这一点;使用NoSQL数据库的好处是什么;说出使用NoSQL数据库(例如Cassandra)而不是使用传统SQL关系数据库的两个原因;什么是布鲁尔CAP定理?解释CAP的三个特性;NoSQL数据库是否满足CAP的所有三个支柱?如果没有,解释为什么没有,以及放松这些限制的好处是什么。

关于Casandra的(一个NoSQL数据库):解释卡桑德拉戒指上的复制因子是指什么,这对Cassandra数据存储的弹性有什么影响;假设你管理一个Cassandra数据库,你面临着可伸缩性问题,即当前的Cassandra节点集不足以处理你的应用程序的需求,如何增加Cassandra数据库的容量?用弹性来解释这一点,以及它对性能的影响;Cassandra有单点故障吗?

第四大题其它描述

传统的流处理系统和微批流处理系统有什么区别?

关于分布式图处理的:解释Pregel在并行图计算时使用“像顶点一样思考”模型的方式,给出一个适合这个模型的图算法的例子;什么是图分区?为什么有必要?讨论图划分在分布式图处理系统中的作用;图分区和性能之间的关系是什么?错误的分区决策会导致更差的性能吗?如果是,为什么?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/296305.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

蟹目标检测数据集VOC格式400张

蟹&#xff0c;一种独特的海洋生物&#xff0c;以其强壮的身体和独特的生活习性而闻名。 蟹的身体宽厚&#xff0c;有一对锐利的大钳子&#xff0c;这使得它们在寻找食物和保护自己时非常有力。蟹的外观颜色多样&#xff0c;有绿色、蓝色、棕色和红色等&#xff0c;这使得它们在…

法一(auto-py-to-exe):Pyinstaller将yolov5的detect.py封装成detect.exe

pip install pyinstaller # 安装最新版本的pyinstaller指令# 在dist目录下只生成一个较大xxx.exe文件&#xff0c;所有依赖库全打包到exe中&#xff0c;打包后的exe可单独使用 pyinstaller -F xxx.py # 在dist目录下生成较小的exe文件&#xff0c;其他依赖库全都在dist文件夹下…

[C#]利用opencvsharp实现深度学习caffe模型人脸检测

【官方框架地址】 https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt 采用的是官方caffe模型res10_300x300_ssd_iter_140000.caffemodel进行人脸检测 【算法原理】 使用caffe-ssd目标检测框架训练的caffe模型进行深度学习模型检测 …

【ARMv8架构系统安装PySide2】

ARMv8架构系统安装PySide2 Step1. 下载Qt资源包Step2. 配置和安装Qt5Step3. 检查Qt-5.15.2安装情况Step4. 安装PySide2所需的依赖库Step5. 下载和配置PySide2Step6. 检验PySide2是否安装成功 Step1. 下载Qt资源包 if you need the whole Qt5 (~900MB): wget http://master.qt…

全新盲盒商城源码 /潮乎盲盒源码 /搭建教程/后端采用Laravel框架开发

源码介绍&#xff1a; 全新盲盒商城源码、潮乎盲盒源码&#xff0c;它附有搭建教程&#xff0c;后端采用Laravel框架开发。 采用后端Laravel框架进行开发&#xff0c;前端开发框架则使用了uniappvue。在环境配置方面&#xff0c;我们建议使用php7.4 mysql5.6 nginx1.22 re…

用友U8 Cloud smartweb2.RPC.d XML外部实体注入漏洞

产品介绍 用友U8cloud是用友推出的新一代云ERP&#xff0c;主要聚焦成长型、创新型、集团型企业&#xff0c;提供企业级云ERP整体解决方案。它包含ERP的各项应用&#xff0c;包括iUAP、财务会计、iUFO cloud、供应链与质量管理、人力资源、生产制造、管理会计、资产管理&#…

MATLAB中xcorr函数用法

目录 语法 说明 示例 两个向量的互相关 向量的自相关 归一化的互相关 xcorr函数的功能是返回互相关关系。 语法 r xcorr(x,y) r xcorr(x) r xcorr(___,maxlag) r xcorr(___,scaleopt) [r,lags] xcorr(___) 说明 r xcorr(x,y) 返回两个离散时间序列的互相关。互相…

基于R语言(SEM)结构方程模型教程

详情点击链接&#xff1a;基于R语言&#xff08;SEM&#xff09;结构方程模型教程 01、R/Rstudio (2)R语言基本操作&#xff0c;包括向量、矩阵、数据框及数据列表等生成和数据提取等 (3)R语言数据文件读取、整理&#xff08;清洗&#xff09;、结果存储等&#xff08;含tidve…

助力实体店数字化升级,VR智慧门店打造线上逛店体验

近年来&#xff0c;传统实体店业绩增长过于缓慢&#xff0c;实体门店的销售疲态十分明显&#xff0c;甚至于部分城市已经出现大量线下实体店开始关门的现象&#xff0c;因此顺应实体零售数字化升级趋势已经刻不容缓。越来越多的实体门店开始意识到这个问题&#xff0c;并逐步开…

window服务器thinkphp队列监听服务

经常使用linux的同学们应该对使用宝塔来做队列监听一定非常熟悉&#xff0c;但对于windows系统下&#xff0c;如何去做队列的监听&#xff1f;是一个很麻烦的事情。 本文将通过windows系统的服务来实现队列的监听。 对于thinkphp6 queue如何使用&#xff0c;不再赘述。其它系…

算法29:不同路径问题(力扣62和63题)--针对算法28进行扩展

题目&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff0…

L1-085:试试手气

我们知道一个骰子有 6 个面&#xff0c;分别刻了 1 到 6 个点。下面给你 6 个骰子的初始状态&#xff0c;即它们朝上一面的点数&#xff0c;让你一把抓起摇出另一套结果。假设你摇骰子的手段特别精妙&#xff0c;每次摇出的结果都满足以下两个条件&#xff1a; 1、每个骰子摇出…

设计模式② :交给子类

文章目录 一、前言二、Template Method 模式1. 介绍2. 应用3. 总结 三、Factory Method 模式1. 介绍2. 应用3. 总结 参考内容 一、前言 有时候不想动脑子&#xff0c;就懒得看源码又不像浪费时间所以会看看书&#xff0c;但是又记不住&#xff0c;所以决定开始写"抄书&qu…

C#之反编译之路(一)

本文将介绍微软反编译神器dnSpy的使用方法 c#反编译之路(一) dnSpy.exe区分64位和32位,所以32位的程序,就用32位的反编译工具打开,64位的程序,就用64位的反编译工具打开(个人觉得32位的程序偏多,如果不知道是32位还是64位,就先用32位的打开试试) 目前只接触到wpf和winform的桌…

算法每日一题:在链表中插入最大公约数 | 链表 | 最大公约数

hello&#xff0c;大家好&#xff0c;我是星恒 今天的题目是有关链表和最大公约数的题目&#xff0c;比较简单&#xff0c;核心在于求解最大公约数&#xff0c;我们题解中使用辗转相除法来求解&#xff0c;然后我们会在最后给大家拓展一下求解最大公约数的四个方法&#xff0c;…

码云Gitee复制 GitHub 项目

码云提供了直接复制 GitHub 项目的功能&#xff0c;方便我们做项目的迁移和下载。 1.新建仓库 2.导入仓库 3.强制同步 如果 GitHub 项目更新了以后&#xff0c;在码云项目端可以手动重新同步&#xff0c;进行更新&#xff01;

odoo16 连接postgresql错误

odoo16 连接postgresql错误 odoo16 用odoo15的环境出错&#xff0c;看到是psycopg2.OperationalError分析是postgresql版本问题&#xff0c;安装了13版本&#xff0c;还是出错&#xff0c;多版本共存问题如下&#xff1a; Traceback (most recent call last):File "D:\o…

数一下 1到 100 的所有整数中出现多少个数字9并输出这些数字

分析&#xff1a; 我们知道 1-100的整数 i 中&#xff0c;9会出现在十位和个位上&#xff0c;数9出现的次数可以通过以下来实现&#xff1a; 个位是9 // i % 10得到整数 i 个位上的数十位是9 // i / 10得到整数 i 除了个位数的数字 这也是做这道题之后&#xff0c;我们需要…

MySQL基础笔记(5)DCL数据控制语句

数据控制语句&#xff0c;用来管理数据库用户、控制数据库的访问权限~ 目录 一.用户管理 1.查询用户 2.创建用户 3.修改用户密码 4.删除用户 二.权限管理 1.查询权限 2.授予权限 3.撤销权限 一.用户管理 1.查询用户 use MySQL; select * from user; 2.创建用户 crea…

MySQL——视图

目录 一.视图介绍 二.基本使用 三.视图规则和限制 一.视图介绍 视图是一个虚拟表&#xff0c;其内容由查询定义。同真实的表一样&#xff0c;视图包含一系列带有名称的列和行数据。视图的数据变化会影响到基表&#xff0c;基表的数据变化也会影响到视图。 二.基本使用 创…