噬菌体序列分析工具PhaVa的使用和使用方法

github: 25280841/PhaVa: Adapting the phasefinder approach for identifying phase variation to long reads (github.com)

 挺简单的,这里就不翻译了,大家看着直接用吧。

PhaVa

PhaVa is an approach for finding potentially Phase Variable invertible regions, also referred to as invertons, in long-read seqeuncing data

Dependencies

Versions listed are the versions PhaVa has been tested on.

  • EMBOSS (v. 6.5.7) einverted
  • minimap2 (v. 2.17)
  • pysam (v. 0.17.0)
  • Biopython (v. 1.81)

PhaVa is developed and tested on Linux operating systems (CentOS Linux 7), however it should compatible with Mac OSX and Windows

Usage

The PhaVa workflow is divided into three steps: locate, create, and ratio.

phava locate -i genome.fasta -d out_dir
phava create -d out_dir
phava ratio -r long_reads.fastq -d out_dir

Alternatively, all three steps can be run in a single command via variation_wf

phava variation_wf -i genome.fasta -r long_reads.fastq -d out_dir

Output from each step is centered around a output directory (-d) and should be the same directory for the entire workflow The locate and create steps only need to be performed once for a given genome or metagenome, and ratio can then be run on long-read samples using the same output directory (-d)

Any invertons with at least 1 read aligning in the reverse orientation will be found in the output. However, it is strongly recommended to fruther filter based on a minimum reverse read count and minimum % reverse of all reads cutoff (3 and 3% are recommended, respectively)

Expected output: 

Installation

Beyond installing dependencies, PhaVa install is:

git clone https://github.com/patrickwest/PhaVa

Testing

PhaVa install can be tested on a small simulated dataset, typically in <1 minute, with pytest and a pytest module located in the 'tests' subdirectory:

pytest phava_test.py

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/296002.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

linux中的系统安全

一.账号安全 将非登录用户的shell设为/sbin/nologin 系统中用户有三种&#xff1a;超级管理员 普通用户 程序用户 前两种用户可以登录系统&#xff0c;程序用户不给登录 所以称为非登录用户 命令格式&#xff1a; usermod -s /sbin/nologin&#xff08;改已有用户&#…

【动态规划】【字符串】132.分割回文串 II

作者推荐 【动态规划】【字符串】扰乱字符串 本文涉及的基础知识点 动态规划 字符串 LeetCode132. 分割回文串 II 给你一个字符串 s&#xff0c;请你将 s 分割成一些子串&#xff0c;使每个子串都是回文。 返回符合要求的 最少分割次数 。 示例 1&#xff1a; 输入&#x…

11.2 Linux串口驱动框架

tty 驱动程序框架 tty 驱动程序从下往上分别是设备驱动层、行规程、终端虚拟化、TTY I/O层&#xff0c;它们的功能如下&#xff1a; 设备驱动层&#xff1a;用于驱动设备&#xff0c;如串口、显示器、键盘等。行规程&#xff1a;用于处理控制字符、回显输入数据、缓存输入数据…

矩阵的乘法

首先矩阵的乘法定义如下&#xff1a; #include <stdio.h> int main() { int i 0; int j 0; int arr[20][20] { 0 }; int str[20][20] { 0 }; int s[20][20] { 0 }; int n1 0; int n2 0; int m2 0; int z 0; int m1 0;…

使用IDEA官方docker插件构建镜像

此方法同样适用于jetbrains系列的其他开发软件 在IDEA中&#xff0c;如果是maven项目&#xff0c;可以使用插件 <plugin><groupId>com.spotify</groupId><artifactId>docker-maven-plugin</artifactId><version>1.2.2</version> &…

用于查询性能预测的计划结构深度神经网络模型--大数据计算基础大作业

用于查询性能预测的计划结构深度神经网络模型 论文阅读和复现 24.【X1.1】 在关系数据库查询优化领域&#xff0c;对查询时间的估计准确性直接决定了查询优化结果&#xff0c;进而影响到数据库整体的查询效率。但由于数据库自身的复杂性&#xff0c;查询时间受到数据分布、数据…

Linux操作实例 – 输入输出重定向

Linux操作实例 – 输入输出重定向 Input & Output Redirection Examples in Linux By Jackson 1. 前言 在操作计算机的时候&#xff0c;我们能够很容易通过键盘、鼠标给计算机输入信息&#xff08;例如&#xff1a;写公文、邮件&#xff0c;同时通过显示器得到输出。这就…

【AI视野·今日Sound 声学论文速览 第三十九期】Tue, 2 Jan 2024

AI视野今日CS.Sound 声学论文速览 Tue, 2 Jan 2024 Totally 7 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Sound Papers Enhancing Pre-trained ASR System Fine-tuning for Dysarthric Speech Recognition using Adversarial Data Augmentation Authors Huimen…

数据安全保护体系的设计原则

目录 引言 数据的分类分级原则 数据的分类分级是个长期且动态的过程 数据的分类分级应结合实际应用和业务特性 建立数据分类分级制度和体系也是非常重要的 最小化原则 企业需要对数据访问的用户进行身份验证 企业需要明确用户访问数据的目的是什么 企业需要梳理数据访问…

CentOS 7 安装 PPTP

环境&#xff1a; 阿里云试用机&#xff1a; 外网IP&#xff1a;114.55.80.150 内网IP&#xff1a;172.28.11.92 一、服务器安装 PPTP 1、安装 yum install epel-release -y 2、安装pptp yum install pptpd iptables-services -y 3、修改配置 vim /etc/pptpd.conf# 最…

DS|二叉树

题目一&#xff1a;DS二叉树 -- 二叉树构建与遍历 题目描述&#xff1a; 给定一颗二叉树的逻辑结构如下图&#xff0c;&#xff08;先序遍历的结果&#xff0c;空树用字符‘#’表示&#xff0c;例如AB#C##D##&#xff09;&#xff0c;建立该二叉树的二叉链式存储结构&#xf…

【面试高频算法解析】算法练习5 深度优先搜索

前言 本专栏旨在通过分类学习算法&#xff0c;使您能够牢固掌握不同算法的理论要点。通过策略性地练习精选的经典题目&#xff0c;帮助您深度理解每种算法&#xff0c;避免出现刷了很多算法题&#xff0c;还是一知半解的状态 专栏导航 二分查找回溯&#xff08;Backtracking&…

【代码随想录】刷题笔记Day46

前言 刚考完自辩&#xff0c;Chat回答举例什么的真方便。早上做组会PPT去了&#xff0c;火速来刷题&#xff01; 139. 单词拆分 - 力扣&#xff08;LeetCode&#xff09; 单词是物品&#xff0c;字符串s是背包&#xff0c;单词能否组成字符串s&#xff0c;就是问物品能不能把…

1.3进制,码(8421),化简规则、卡诺图化简、性质,触发器(转换与设计、应用),电路图,电路设计

十进制与原码、反码、补码之间的转换 正数的原码、反码、补码相同&#xff0c;符号位为0 负数的原码为、符号位1&#xff0c;二进制数 反码&#xff0c;符号位不变、其它取反&#xff0c; 补码为&#xff1a;反码最低有效位1 运算 卡诺图化简 奇偶校验码 检查1的个数&…

使用CentOS 7.6搭建HTTP隧道代理服务器

在现代网络环境中&#xff0c;HTTP隧道代理服务器因其灵活性和安全性而受到广泛关注。CentOS 7.6&#xff0c;作为一个稳定且功能强大的Linux发行版&#xff0c;为搭建此类服务器提供了坚实的基础。 首先&#xff0c;我们需要明确HTTP隧道代理的基本原理。HTTP隧道代理允许客户…

字节填充与0比特填充以及数据链路的基本问题

目录 字节填充&#xff1a; 比特填充&#xff1a; 数据链路有三个基本问题 1.封装成帧 2.透明传输 3.差错检测 首先介绍一下PPP的帧结构&#xff1a; 首部的第一个字段和尾部的第二个字段都是标志字段F(Flag)&#xff0c;规定为0x7E (符号“0x”表示它后面的字符是用十六…

python练习3【题解///考点列出///错题改正】

一、单选题 1.【单选题】 ——可迭代对象 下列哪个选项是可迭代对象&#xff08; D&#xff09;&#xff1f; A.(1,2,3,4,5) B.[2,3,4,5,6] C.{a:3,b:5} D.以上全部 知识点补充——【可迭代对象】 可迭代对象&#xff08;iterable&#xff09;是指可以通过迭代&#xff…

发票信息提取v1.2.0

程序介绍 “发票信息提取”是一款用于提取电子发票的PDF、XML文件中的开票信息到excel表格的软件&#xff0c;无需联网及进行复杂配置&#xff0c;打开即用。目前支持增值税电子发票&#xff08;非数电票&#xff09;原始PDF文件&#xff0c;及数电票的XML文件。 更新内容 增加…

【I2C】i2c-tools工具使用,以及开发调试

i2c调试 eeprom 手动创建eeprom设备调试&#xff0c;例如0x50 是FRU的地址&#xff0c;i2c-3是bus 创建设备 echo 24c32 0x50 > /sys/bus/i2c/devices/i2c-4/new_device如果设备正确&#xff0c;将成功被创建&#xff0c;并且生成/sys/bus/i2c/devices/4-0050/eeprom&am…

智能语音机器人NXCallbot

受出海公司业务全球化的影响&#xff0c;智能客服逐渐从便捷应用变为市场刚需。新基建七大领域中&#xff0c;人工智能及场景应用的基础建设是最核心的领域&#xff0c;而智能客服作为商业化实际应用的核心场景之一&#xff0c;能提升企业运营效率&#xff0c;为行业客户赋能。…