基于帝国主义竞争算法优化的Elman神经网络数据预测 - 附代码

基于帝国主义竞争算法优化的Elman神经网络数据预测 - 附代码

文章目录

  • 基于帝国主义竞争算法优化的Elman神经网络数据预测 - 附代码
    • 1.Elman 神经网络结构
    • 2.Elman 神经用络学习过程
    • 3.电力负荷预测概述
      • 3.1 模型建立
    • 4.基于帝国主义竞争优化的Elman网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对Elman神经网络,初始权值阈值盲目随机性的缺点。采用帝国主义竞争算法对ELman的阈值和权值进行优化。利用电力负荷预测模型进行测试,结果表明改进后的神经网络预测性能更佳。

1.Elman 神经网络结构

Elman 型神经网络一般分为四层:输入层、隐含层(中间层)、承接层和输出层 。 如图 1所示。输入层、隐含层、输出层的连接类似于前馈式网络 ,输入层的单元仅起信号传输作用,输出层单元起线性加权作用。隐含层单元的传递函数可采用线性或非线性函数,承接层又称上 下文层或状态层,它用来记忆隐含层单元前一时刻的输出值并返回给网络的输入 , 可以认为是 一个一步延时算子。

Elman 神经网络的特点是隐含层的输出通过承接层的延迟与存储,自联到隐含层的输入。 这种自联方式使其对历史状态的数据具有敏感性,内部反馈网络的加入增强了网络本身处理动态信息的能力 ,从而达到动态建模的目的。此外, Elman 神经网络能够以任意精度逼近任意非线性映射,可以不考虑外部噪声对系统影响的具体形式,如果给出系统的输入输出数据对 , 就可以对系统进行建模 。

在这里插入图片描述

图1.Elman网络结构

2.Elman 神经用络学习过程

以图1为例 , Elman 网络的非线性状态空间表达式为 :
y ( k ) = g ( w 3 x ( k ) ) (1) y(k) = g(w^3x(k)) \tag{1} y(k)=g(w3x(k))(1)

x ( k ) = f ( w 1 x c ( k ) + w 2 ( u ( k − 1 ) ) ) (2) x(k)=f(w^1x_c(k)+w^2(u(k-1)))\tag{2} x(k)=f(w1xc(k)+w2(u(k1)))(2)

x c ( k ) = x ( k − 1 ) (3) x_c(k)=x(k-1)\tag{3} xc(k)=x(k1)(3)

式中, y y y m m m 维输出结点向量 ; x x x n n n 维中间层结点单元向量; u u u r r r 维输入向量; x c x_c xc n n n 维反馈状态向量; w 3 w^3 w3 为中间层到输出层连接权值; w 2 w^2 w2为输入层到中间层连接权值; w 1 w^1 w1为承接层到中间层的连接权值; g ( ∗ ) g(*) g()为输出神经元的传递函数,是中间层输出的线性组合; f ( ∗ ) f(*) f()为中间层神经元的传递函数,常采用 S S S 函数 。

Elman 神经网络也采用 BP 算法进行权值修正,学习指标函数采用误差平方和函数。
E ( w ) = ∑ k = 1 n ( y k ( w ) − y k ′ ( w ) ) 2 (4) E(w)=\sum_{k=1}^n(y_k(w)-y'_k(w))^2\tag{4} E(w)=k=1n(yk(w)yk(w))2(4)

3.电力负荷预测概述

电力系统由电力网、电力用户共同组成,其任务是给广大用户不间断地提供经济、可靠、符 质量标准的电能,满足各类负荷的需求,为社会发展提供动力。由于电力的生产与使用具有特殊性,即电能难以大量储存,而且各类用户对电力的需求是时刻变化的,这就要求系统发电出力应随时与系统负荷的变化动态平衡,即系统要最大限度地发挥出设备能力,使整个系统保 持稳定且高效地运行,以满足用户的需求 。 否则,就会影响供用电的质量,甚至危及系统的安全 与稳定 。 因此,电力系统负荷预测技术发展了起来,并且是这一切得以顺利进行的前提和基础。负荷预测的核心问题是预测的技术问题,或者说是预测的数学模型。传统的数学模型是用现成的数学表达式加以描述,具有计算量小、速度快的优点,但同时也存在很多的缺陷和局限性,比如不具备自学习、自适应能力、预测系统的鲁棒性没有保障等。特别是随着我国经济 的发展,电力系统的结胸日趋复杂,电力负荷变化的非线性、时变性和不确定性的特点更加明 显,很难建立一个合适的数学模型来清晰地表达负荷 和影响负荷的变量之间的 关系。而基于神经网络的非数学模型预测法,为解决数学模型法的不足提供了新的思路 。

3.1 模型建立

利用人工神经网络对电力系统负荷进行预测,实际上是利用人工神经网络可以以任意精度逼近任一非线性函数的特性及通过学习历史数据建模的优点。而在各种人工神经网络中, 反馈式神经网络又因为其具有输入延迟,进而适合应用于电力系统负荷预测。根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。因此,用人工神经网络对电力系统负荷进行预测 ,首要的问题是确定神经网络的输入、输出节点,使其能反映电力负荷的运行规律。

一般来说,电力系统的负荷高峰通常出现在每天的 9~ 19 时之间 ,本案对每天上午的逐时负荷进行预测 ,即预测每天 9 ~ 11 时共 3 小时的负荷数据。电力系统负荷数据如下表所列,表中数据为真实数据,已经经过归 一化 。

时间负荷数据负荷数据负荷数据
2008.10.100.12910.48420.7976
2008.10.110.10840.45790.8187
2008.10.120.18280.79770.743
2008.10.130.1220.54680.8048
2008.10.140.1130.36360.814
2008.10.150.17190.60110.754
2008.10.160.12370.44250.8031
2008.10.170.17210.61520.7626
2008.10.180.14320.58450.7942

利用前 8 天的数据作为网络的训练样本,每 3 天的负荷作为输入向量,第 4 天的负荷作为目标向量。这样可以得到 5 组训练样本。第 9 天的数据作为网络的测试样本,验证网络能否合理地预测出当天的负荷数据 。

4.基于帝国主义竞争优化的Elman网络

帝国主义竞争算法原理请参考:https://blog.csdn.net/u011835903/article/details/108517210

利用帝国主义竞争算法对Elman网络的初始权值和阈值进行优化。适应度函数设计为测试集的绝对误差和:
f i t n e s s = ∑ i = 1 n ∣ p r e d i c t n − T r u e V a l u e n ∣ (5) fitness = \sum_{i=1}^n|predict_n - TrueValue_n| \tag{5} fitness=i=1npredictnTrueValuen(5)

5.测试结果

帝国主义竞争参数设置如下:

%% 网络相关参数设定
hiddNum = 18;%隐含层个数
R = size(p_train,1);%输入数据每组的维度
Q = size(t_train,1);%输出数据的维度
threshold = [0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];%每组数据对应维度的最小(0)和最大值(1);

%% 帝国主义竞争相关参数设定
%% 定义帝国主义竞争优化参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = hiddNum*R + hiddNum + Q + hiddNum*hiddNum + Q*hiddNum;%维度,即权值与阈值的个数,承接层个数
lb = -5.*ones(1,dim);%下边界
ub = 5.*ones(1,dim);%上边界
fobj = @(x) fun(x,hiddNum,R,Q,threshold,p_train,t_train,p_test,t_test);

在这里插入图片描述
在这里插入图片描述

从结果来看,3个时刻点,帝国主义竞争-Elman均比原始结果Elman好,误差更小。

由于上述数据有限,大家可以用自己的数据进行测试。

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/295133.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode(31) 下一个排列

整数数组的一个 排列 就是将其所有成员以序列或线性顺序排列。 例如,arr [1,2,3] ,以下这些都可以视作 arr 的排列:[1,2,3]、[1,3,2]、[3,1,2]、[2,3,1] 。 整数数组的 下一个排列 是指其整数的下一个字典序更大的排列。更正式地&#xf…

Python新年烟花代码

Pygame 绘制烟花的基本原理 1,发射阶段:在这一阶段烟花的形状是线性向上,通过设定一组大小不同、颜色不同的点来模拟“向上发射” 的运动运动,运动过程中 5个点被赋予不同大小的加速度,随着时间推移,后面的…

【2024最新版】Win11基础配置操作(磁盘分区、修改各种默认存储位置、安装软件操作)【释放C盘空间】

文章目录 一、硬盘分区0. 磁盘管理1. 压缩卷2. 新建简单卷向导 二、修改默认存储位置1. 保持新内容的地方a. 位置b. 操作 2. 快速访问六件套a. 位置b. 操作 三、安装软件0. 应用商店设置a. 设置中心b. 修改下载设置 1. 微信电脑版设置a. 下载b. 安装c. 聊天记录迁移与备份d. 存…

信息系统安全——缓冲区溢出和恶意代码分析

实验 1 缓冲区溢出和恶意代码分析 1.1 实验名称 《缓冲区溢出和恶意代码分析》 1.2 实验目的 1 、熟练使用恶意代码分析工具 OD 和 IDA 2 、通过实例分析,掌握缓冲区溢出的详细机理 3 、通过实例,熟悉恶意样本分析过程 1.3 实验步骤及内容 第一阶段&…

CSS 纵向顶部往下动画

<template><div class="container" @mouseenter="startAnimation" @mouseleave="stopAnimation"><!-- 旋方块 --><div class="box" :class="{ scale-up-ver-top: isAnimating }"><!-- 元素内容 …

Python字符串

目录 1 创建字符串的三种方式2 字符串的转义3 字符串的格式化输出4 字符串的索引5 字符串的切片6 字符串的拼接7 计算字符串的长度8 判断字符串是否存在 字符串是编程中经常使用到的概念&#xff0c;熟悉字符串的常见用法是掌握编程的必经之路&#xff0c;本篇介绍一下字符串的…

Idea连接Docker在本地(Windows)开发SpringBoot

文章目录 1. 新建运行配置2. 修改运行目标3. 设置新目标Docker4. 选择运行主类5. 运行 当一些需要的服务在docker容器中运行时&#xff0c;因为docker网络等种种原因&#xff0c;不得不把在idea开发的springboot项目放到docker容器中才能做测试或者运行。 1. 新建运行配置 2. …

Spring见解3 AOP

4.Spring AOP 4.1.为什么要学习AOP? 案例&#xff1a;有一个接口Service有一个insert方法&#xff0c;在insert被调用时打印调用前的毫秒数与调用后的毫秒数&#xff0c;其实现为&#xff1a; public class UserServiceImpl implements UserService {private UserDao userDao…

书生·浦语大模型全链路开源开放体系

书生浦语大模型全链路开源体系_哔哩哔哩_bilibili 大模型全链路开源开放体系等你来探索~ https://github.com/internLM/tutorial 书生浦语全链条开源开放体系 1&#xff09;数据: 书生万卷 2TB数据&#xff0c;并行训练&#xff0c;极致优化涵盖多种模态与任务 预训练: I…

vmware虚拟机安装esxi7.0步骤

一、安装准备 1、下载镜像文件 下载链接&#xff1a;https://pan.baidu.com/s/12XmWBCI1zgbpN4lewqYw6g 提取码&#xff1a;mdtx 2、vmware新建一个虚拟机 2.1 选择自定义 2.2 选择ESXi对应版本 2.3 选择稍后安装操作系统 2.4 默认选择 2.5 自定义虚拟机名称及存储位置 2…

android 分享文件

1.在AndroidManifest.xml 中配置 FileProvider <providerandroid:name"android.support.v4.content.FileProvider"android:authorities"com.example.caliv.ffyy.fileProvider"android:exported"false"android:grantUriPermissions"true…

将Django项目从本地上传至宝塔服务器(踩坑记录)

文章目录 写在前面配置本地文件配置宝塔面板解决遇到问题展示运行结果热门文章 自我介绍 ⭐2022年度CSDN 社区之星 Top6 ⭐2023年度CSDN 博客之星 Top16 ⭐2023年度CSDN 城市之星 Top2&#xff08;苏州&#xff09; ⭐CSDN Python领域 优质创作者 ⭐CSDN 内容合伙人 推荐热门…

spring-boot-maven插件repackage(goal)的那些事

前言&#xff1a;在打包Springboot项目成jar包时需要在pom.xml使用spring-boot-maven-plugin来增加Maven功能&#xff0c;在我的上一篇博客<<Maven生命周期和插件的那些事&#xff08;2021版&#xff09;>>中已经介绍过Maven和插件的关系&#xff0c;在此不再赘述&…

基于哈里斯鹰算法优化的Elman神经网络数据预测 - 附代码

基于哈里斯鹰算法优化的Elman神经网络数据预测 - 附代码 文章目录 基于哈里斯鹰算法优化的Elman神经网络数据预测 - 附代码1.Elman 神经网络结构2.Elman 神经用络学习过程3.电力负荷预测概述3.1 模型建立 4.基于哈里斯鹰优化的Elman网络5.测试结果6.参考文献7.Matlab代码 摘要&…

凝聚层次聚类及DBscan算法详解与Python实例

凝聚层次聚类及DBscan算法详解与Python实例 凝聚层次聚类DBscan算法实例演示 在本篇博客中&#xff0c;我们将深入探讨凝聚层次聚类&#xff08;Agglomerative Hierarchical Clustering&#xff09;和DBscan算法&#xff0c;并通过Python实例演示它们的应用。这两种算法都属于聚…

12 位多通道,支持 MPU 存储保护功能,应用于工业控制,智能家居等产品中的国产芯片ACM32F403/F433

ACM32F403/F433 芯片的内核基于 ARMv8-M 架构&#xff0c;支持 Cortex-M33 和 Cortex-M4F 指令集。芯片内核 支持一整套DSP指令用于数字信号处理&#xff0c;支持单精度FPU处理浮点数据&#xff0c;同时还支持Memory Protection Unit &#xff08;MPU&#xff09;用于提升应用的…

Vue中break关键字

Change() {//每次触发该事件&#xff0c;都要讲data重新赋值一次this.data JSON.parse(JSON.stringify(this.data1));// 根据选中的等级更新数据switch (this.selectedlevel) {case 1:// 更新数据为一级数据this.data this.data.filter(item > item.level "1"…

VINS-MONO拓展2----更快地makeHessian矩阵

1. 目标 完成大作业T2 作业提示&#xff1a; 多线程方法主要包括以下几种(参考博客)&#xff1a; MPI(多主机多线程开发),OpenMP(为单主机多线程开发而设计)SSE(主要增强CPU浮点运算的能力)CUDAStream processing, 之前已经了解过std::thread和pthread&#xff0c;拓展1…

Unity 打包AB 场景烘培信息丢失

场景打包成 AB 资源的时候&#xff0c;Unity 不会打包一些自带相关的资源 解决办法&#xff1a;在 Project settings > Graphics下设置&#xff08;Automatic 修改成 Custom&#xff09;

WPF 入门教程DispatcherTimer计时器

https://www.zhihu.com/tardis/bd/art/430630047?source_id1001 在 WinForms 中&#xff0c;有一个名为 Timer 的控件&#xff0c;它可以在给定的时间间隔内重复执行一个操作。WPF 也有这种可能性&#xff0c;但我们有DispatcherTimer控件&#xff0c;而不是不可见的控件。它几…