2023-2024学年上学期算法设计与分析题期末考试模拟卷

2023-2024学年上学期算法设计与分析题期末考试模拟卷

文章目录

  • 2023-2024学年上学期算法设计与分析题期末考试模拟卷
  • 单选题
  • 程序填空题
      • 输入格式:
      • 输出格式:
      • 输入样例1:
      • 输出样例1:
  • 主观题

注意:该题集非标准答案,仅供参考,如果异议,请在评论区提出或私信。

单选题

  1. ()关于分治法描述不正确的是:

    A.分治法的基本思想是将规模较大的问题划分为规模较小的子问题来求解。

    B.随机生成100个整数并存放在一个数组中,然后从中指定一个整数,则可用二分搜索算法在O(logn)的时间内找到该整数。

    C.用分治法求解大整数乘法和Strassen矩阵乘法的基本思想均是通过合理的运算变换来减少乘法的次数。

    D.合并排序和快速排序的时间复杂性均为O(nlogn)。


  1. ( )关于动态规划描述不正确的是:

    A.动态规划也是将规模较大的问题划分为规模较小的子问题来求解,但与分治法不同的是,动态规划所划分出来的子问题相互不独立。

    B.动态规划算法适用于求解最优化问题,一般采用自底向上的方式来计算。

    C.能用动态规划求解的问题就不能使用递归算法求解出来。

    D.动态规划求解的问题具有最优子结构和重叠子问题性质。


  1. ( )关于贪心算法描述正确的是:

    A.求解活动安排问题的贪心算法GreedySelector的时间复杂性为​O(n)​。

    B.哈夫曼编码是一种最优前缀码,因此对于给定的字符集,各字符编码是唯一的。

    C.对于给定的一个带权有向图G= ( V , E )​ ,则可用Dijkstra算法求解出从指定源顶点到其他顶点的最短路长度。

    D.背包问题(可散装)的贪心算法同样适用于求解0-1背包问题。


  1. ( )关于回溯法描述正确的是:

    A.回溯法即可采用深度优先搜索策略,也可采用广度优先搜索策略。

    B.回溯法求解时,可以事先不定义问题的解空间。

    C.0-1背包问题的解空间树是一颗排列树。

    D.为提高求解效率,使用回溯法时可同时用约束函数和上界函数来剪去一部分子树。


  1. ( )关于分支限界法描述不正确的是:

    A.分支限界法两种常见方法为:队列式分支限界法和优先队列式分支限界法。

    B.使用分支限界法时可用约束函数和上界函数来提高搜索效率。

    C.在分支限界法中,每个活结点有2个机会成为扩展结点。

    D.使用优先队列式分支限界法求解时需要事先明确结点的优先级定义。


  1. 下面代码段的时间复杂度是( )。

    for( i=1; i<2n; i++ )
        for ( j=1; j<=n; j++ )
            x++;
    

    A. O ( 2 n ) O(2n) O(2n)

    B. O ( n 2 ) O(n^2) O(n2)

    C. O ( 2 n 2 ) O(2n^2) O(2n2)

    D. O ( 2 n ) O(2^n) O(2n)


  1. 假如需要计算以下6个矩阵的依次连乘:

    图片.png
    求解最优乘法次数的递推计算得到如下最优分割位置矩阵s[i][j]:

    图片.png
    那么,计算A1到A4连乘的子问题,第一步计算括号要

    A.1-3分割

    B.3-1分割

    C.2-2分割

    D.0-4分割


  1. 假如装载问题的两艘轮船B1和B2的承载重量分别是C1和C2(C1>C2),那么解决装载问题可以先解决其中一艘轮船的0-1背包问题,请问选择哪一艘船更合理?

    A.选B1更合理

    B.选B2更合理

    C.选B1或B2都一样

    D.装载问题与0-1背包问题无关


  1. 下列的排序算法使用了分治思想的有()

    归并排序

    快速排序

    选择排序

    冒泡排序

    A.选择排序
    冒泡排序

    B.归并排序
    快速排序

    C.快速排序
    选择排序

    D.归并排序
    冒泡排序


  1. 若重复进行某种实验,每次实验是互相独立的,且成功的概率为 p > 0 p > 0 p>0,则我们等到首次成功实验所需要重复的次数的期望值是:

    A. p / ( 1 − p ) p /( 1 - p ) p/(1p)

    B. 1 / ( 1 − p ) 1 / (1 - p) 1/(1p)

    C. 1 / p 1/p 1/p

    D.以上全不对


程序填空题

  1. 0/1背包问题(回溯法)

    #include <stdio.h>
    #include <string.h>
    #include <iostream>
    #define MAXN 20                //最多物品数
    using namespace std;
    int n;                        //物品数
    int W;                        //限制重量
    int w[MAXN]={0};            //存放物品重量,不用下标0元素
    int v[MAXN]={0};            //存放物品价值,不用下标0元素
    int x[MAXN];                    //存放最终解
    int maxv;                         //存放最优解的总价值
    void dfs(int i,int tw,int tv,int rw,int op[]) //求解0/1背包问题
    {
        int j;
        if (i>n)                    //找到一个叶子结点
        {    if (____第一空____)     //找到一个满足条件的更优解,保存它
            {    maxv=tv;
                for (____第二空____)    //复制最优解
                    x[j]=op[j];
            }
        }
        else                        //尚未找完所有物品
        {    if (____第三空____)          //左孩子结点剪枝:满足条件时才放入第i个物品
            {
                op[i]=1;            //选取第i个物品
                dfs(____第四空____);
            }
            op[i]=0;                //不选取第i个物品,回溯
            if (____第五空____)            //右孩子结点剪枝
                dfs(____第六空____);
        }
    }
    void dispasolution()            //输出最优解
    {    int i;
        for (i=1;i<=n;i++)
            if (x[i]==1)
                printf("%d ",i);
        printf("\n%d %d",W,maxv);
    }
    int main()
    {
        int i;
        cin>>n>>W; //输入物体个数及背包载重量 
        for(int i=1;i<=n;i++)//输入各物体重量及价值 
            cin>>w[i]>>v[i];
        int op[MAXN];                //存放临时解
        memset(op,0,sizeof(op));
        int rw=0;
        for (int i=1;i<=n;i++)
            rw+=w[i];
        dfs(1,0,0,rw,op);
        dispasolution();
        return 0;
    }
    

    输入格式:

    第一行输入背包载重量W及背包个数n,再依次输入n行,每行为背包重量wi和价值vi。

    输出格式:

    第一行输出输出装入背包内的物体编号(末尾有空格),第二行输出背包内的物体总重量和总价值。

    输入样例1:

    5 10
    2 6
    2 3
    6 5
    5 4
    4 6
    

    输出样例1:

    1 2 3 
    10 14 
    

    参考答案:

    第一空:tw==W&&tv>maxv

    第二空:j=1;j<=n;j++

    第三空:tw+w[i]<=W

    第四空:i+1,tw+w[i],tv+v[i],rw-w[i],op

    第五空:tw+rw>=W

    第六空:i+1,tw,tv,rw-w[i],op


主观题

  1. 动态规划法与分治法的异同
    简述动态规划法与分治法的异同。

    仅供参考(自己写的)

    动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划法求解的问题,经分解得到的子问题往往不是互相独立的。若用分治法解这类问题,则分解得到的子问题数目太多,以至于最后解决原问题需要耗费指数时间。然而,不同子问题的数目常常只有多项式量级。在用分治法求解时,有些子问题被重复计算了许多次。如果能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,就可以避免大量重复计算,从而得到多项式时间算法。(来自书本P50)


  1. 简答题-对比说明分支限界法中活结点表的两种组织形式及其特点。
    对比说明分支限界法中活结点表的两种组织形式及其特点。

    仅供参考(自己写的)

    1)队列式(FIFO)分支限界法

    队列式分支限界法将活结点表组织成一个队列,并按队列的先进先出FIFO(firstin first out)原则选取下一个结点为当前扩展结点。

    2)优先队列式分支限界法

    优先队列式的分支限界法将活结点表组织成一个优先队列,并按优先队列中规定的结点优先级选取优先级最高的下一个结点成为当前扩展结点。

    (来自书本P153)


  1. 计算题
    证明: n 2 + 3 n l o g n + 10 n + 1000 = O ( n 2 ) n^2 + 3nlogn + 10n + 1000 = O(n^2) n2+3nlogn+10n+1000=O(n2)

    ∵ n 2 = O ( n 2 ) 3 n l o g n = O ( 3 n l o g n ) = O ( n l o g n ) 10 n = O ( 10 n ) = O ( n ) 1000 = O ( c ) ∴ n 2 + 3 n l o g + 10 n + 1000 = O ( n 2 ) + O ( n l o g n ) + O ( n ) + O ( c ) = O ( m a x ( n 2 , n l o g n , n , c ) ) = O ( n 2 ) \begin{equation} \begin{aligned} \because & n^2=O(n^2)\\ & 3nlogn=O(3nlogn)=O(nlogn)\\ & 10n=O(10n)=O(n)\\ & 1000=O(c)\\ \therefore & n^2+3nlog+10n+1000\\ & =O(n^2)+O(nlogn)+O(n)+O(c)\\ & =O(max(n^2,nlogn,n,c))\\ & =O(n^2) \end{aligned} \nonumber \end{equation} n2=O(n2)3nlogn=O(3nlogn)=O(nlogn)10n=O(10n)=O(n)1000=O(c)n2+3nlog+10n+1000=O(n2)+O(nlogn)+O(n)+O(c)=O(max(n2,nlogn,n,c))=O(n2)


  1. 计算题-矩阵连乘

    利用动态规划法计算矩阵连乘积A1A2A3A4A5的最佳求积顺序(即:数乘次数最少的计算次序),各矩阵的维数分别为:

    矩阵A1A2A3A4A5
    维数5x1010x33x1212x55x50

    (要求给出计算步骤)

    使用m[i][j]来表示计算从Ai到Aj的矩阵连乘积所需的最少乘法次数。
    同时,使用s[i][j]来记录达到最少乘法次数的最后一个乘法操作的位置。

    动态规划的思路是:

    1. 对于任意的i,m[i][i] = 0,因为单个矩阵的乘法次数为0。
    2. 从长度为2的子链开始(即计算A1A2, A2A3, …),然后逐步增加子链的长度,直到覆盖整个链。
    3. 对于每个子链Ai…Aj,尝试所有可能的k值(i <= k < j),将子链分为两部分Ai…Ak和Ak+1…Aj,并计算乘法次数。
    4. 选择乘法次数最小的k值,并更新m[i][j]和s[i][j]。

      计算过程如下表所示:

      m[i][j]表
    i\j12345
    101503304051655
    203603302430
    30180930
    403000
    50

    s[i][j]表

    i\j12345
    101224
    20222
    3034
    404
    50

    由表可得出,最佳求积顺序为:
    (((A1A2)(A3A4))A5)

    附计算过程:

    计算过程(以下内容在考试时不需要写):
    当 r = 2 时
    i = 1, j = 2, k = 1
    m[1][2] = 5 x 10 x 3 = 150
    s[1][2] = 1
    i = 2, j = 3, k = 1
    m[2][3] = 10 x 3 x 12 = 360
    s[2][3] = 2
    i = 3, j = 4, k = 3
    m[3][4] = 3 x 12 x 5 = 180
    s[3][4] = 3
    i = 4, j = 5, k = 4
    m[4][5] = 12 x 5 x 50 = 3000
    s[4][5] = 4
    </br>
    当 r = 3 时
    i = 1, j = 3
    k = 1时 m[1][3] = 5 x 10 x 12 + m[2][3] = 960
    k = 2时 m[1][3] = 5 x 3 x 12 + m[1][2] = 330
    当 k = 2 时 m[1][3] 最小,故
    m[1][3] = 330
    s[1][3] = 2
    i = 2, j = 4
    k = 2时 m[2][4] = 10 x 3 x 5 + m[3][4] = 330
    k = 3时 m[2][4] = 10 x 12 x 5 + m[2][3] = 960
    当 k = 2 时 m[2][4] 最小,故
    m[2][4] = 330
    s[2][4] = 2
    i = 3, j = 5
    k = 3时 m[3][5] = 3 x 12 x 50 + m[4][5] = 2100
    k = 4时 m[3][5] = 3 x 5 x 80 + m[3][4] = 930
    当 k = 4 时 m[3][5] 最小,故
    m[3][5] = 930
    s[3][5] = 4
    
    当 r = 4 时
    i = 1, j = 4
    k = 1时 m[1][4] = 5 x 10 x 5 + m[1][1] + m[2][4] = 580
    k = 2时 m[1][4] = 5 x 3 x 5 + m[1][2] + m[3][4] = 405
    k = 3时 m[1][4] = 5 x 12 x 5 + m[1][3] + m[4][4] = 630
    当 k = 2 时 m[1][4] 最小,故
    m[1][4] = 405
    s[1][4] = 2
    i = 2, j = 5
    k = 2时 m[2][5] = 10 x 3 x 50 + m[2][2] + m[3][5] = 2430
    k = 3时 m[2][5] = 10 x 12 x 50 + m[2][3] + m[4][5] = 6960
    k = 4时 m[2][5] = 10 x 5 x 50 + m[2][4] + m[5][5] = 2830
    当 k = 2 时 m[2][5] 最小,故
    m[2][5] = 2430
    s[2][5] = 2
    
    当 r = 5 时
    i = 1, j = 5
    k = 1时 m[1][5] = 5 x 10 x 50 + m[1][1] + m[2][5] = 4930
    k = 2时 m[1][5] = 5 x 3 x 50 + m[1][2] + m[3][5] = 1830
    k = 3时 m[1][5] = 5 x 12 x 50 + m[1][3] + m[4][5] = 2460
    k = 4时 m[1][5] = 5 x 5 x 50 + m[1][4] + m[5][5] = 1655
    当 k = 4 时 m[1][5] 最小,故
    m[1][5] = 1655
    s[1][5] = 4
    

    这个过程如果用算法表示是这样的:

    a[6] = {5, 10, 3, 12, 5, 50};
    for (int i = 1; i <= 5; i++) {
    	m[i][i] = 0;
    	s[i][i] = 0;
    }
    for (int r = 2; r <= 5; r++) {
    	for (int i = 1; i <= 5 - r + 1; i++) {
    		int j = i + r - 1;
    		m[i][j] = a[i - 1] * a[i] * a[j] + m[i + 1][j];
    		s[i][j] = i;
    		for (int k = i + 1; k < j; k++) {
    			int t = m[i][k] + m[k + 1][j] + a[i - 1] * a[k] * a[j];
    			if (t < m[i][j]) {
    				m[i][j] = t;
    				s[i][j] = k;
    			}
    		}
    	}
    }
    

  1. 算法设计题-马踏棋盘
    国际象棋中马的走法相当复杂,现在给定一个8*8的国际象棋棋盘,要求马连续走动若干步,求马的最终位置。马的走法只有两种:1)跳到相邻的格子;2)跳到对角线两格相连的格子。注意,马只能向下和向右走动,且每次只能走一格。设计一种策略,要求每个方格只进入一次,走遍棋盘全部的64个方格,得到马的行走路线。(不需要写出详细代码,只需写出使用的算法策略名称、算法策略、数据准备以及程序实现流程)(15分)

    算法策略名称:回溯算法(Backtracking)

    算法策略:

    1. 初始化棋盘,所有格子标记为未访问。
    2. 选择一个起始位置(例如,左上角)。
    3. 从起始位置开始,尝试马的所有可能移动。
    4. 对于每一个移动,检查新的位置是否在棋盘内且未被访问过。
    5. 如果新的位置有效,则标记该位置为已访问,并递归地尝试从该位置进行下一步移动。
    6. 如果在尝试所有可能的移动后没有找到解,则回溯到前一步,并尝试其他移动。
    7. 当找到一条路径,即访问了所有格子时,停止搜索并返回结果。

    数据准备:

    • 8x8的二维数组,表示棋盘,每个元素初始化为未访问状态。
    • 马的当前位置(行和列)。
    • 可能的移动列表,根据马的走法生成。

    程序实现流程:

    1. 初始化棋盘和马的位置。

    2. 调用回溯函数,传入当前位置和棋盘状态。

    3. 在回溯函数中,检查是否所有格子都已被访问。

      • 如果是,则找到了解决方案,返回或记录结果。

      • 如果不是,则遍历所有可能的移动。

        • 对于每个移动,检查新的位置是否有效。
        • 如果有效,更新棋盘状态,递归调用回溯函数。
        • 如果递归调用没有找到解,则恢复棋盘状态到移动之前的状态(回溯)。
    4. 如果回溯函数返回,但没有找到解,则整个问题无解。


  1. 算法设计题-活动安排

    某体育馆有一羽毛球场出租,现在总共有10位客户申请租用此羽毛球场,每个客户所租用的开始时间和结束时间如下表所示,其中s(i)表示开始租用时间,f(i)表示结束租用时间:

    i12345678910
    s(i)03153511886
    f(i)65498713121110

    同一时刻,该羽毛球场只能租给一位客户,请设计一个租用安排方案,在这10位客户里面,使得体育馆尽可能满足多位客户的需求,并算出针对上表的10个客户申请,最多可以安排几位客户申请?

    为了解决这个问题,可以使用贪心算法中的“活动选择”策略。基本思想是:每次选择结束时间最早的活动,这样可以为后面的活动留下更多的时间。

    具体步骤如下:

    1. 首先,将10个客户的申请按照结束时间f(i)​进行升序排序。如果两个活动的结束时间相同,则选择开始时间较晚的那个(这样可能会为后面的活动留下更多的时间)。

    2. 初始化一个空的活动列表,用于存放被选中的活动。

    3. 从排序后的第一个活动开始,检查每一个活动:

      • 如果该活动的开始时间不早于当前活动列表中的最后一个活动的结束时间,则拒绝该活动。
      • 否则,将该活动加入到活动列表中。
    4. 当所有活动都被检查后,活动列表中的活动数量就是最多可以安排的客户数量。

    现在,我们来应用这个策略到给定的数据上:

    首先,按照f(i)​进行排序,得到以下顺序(这里只列出了被选中的活动,未选中的活动用“X”表示):

    i12345678910
    原i32165410987
    s(i)13053568811
    f(i)45678910111213
    选中XXXXXX

    按照上述策略,我们选择了以下活动:3, 6, 7, 9。所以最多可以安排4位客户的申请。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/295043.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linkage Mapper 工具参数详解——Centrality Mapper

【小白一学就会无需其他教程】此文档用于解析使用Linkage Mapper 各输入输出参数详情以及可能的影响&#xff0c;并介绍了如何解释模型输出结果和输出参数&#xff0c;适合刚入手的人。篇幅很长很啰嗦&#xff0c;是因为每个参数都解释的万分细致。 从以下链接中获取内容&…

针对CSP-J/S的冲刺练习:Day 4 提高题

一、审题 时间限制&#xff1a;1000ms 内存限制&#xff1a;256MB 平均AC率&#xff1a;7.89% 题目描述 输出一个n*n大小的螺旋矩阵。 螺旋矩阵的样子&#xff1a; 输入描述 共一行&#xff0c;一个正整数n&#xff0c;表示矩阵变长的长度 输出描…

LeetCode206链表反转

//我来理解一下运用递归求解 class Solution { public:ListNode* reverseList(ListNode* head) {//首先判断是否为最后一个元素if(head null|| head.next null){return head;//返回末尾元素}ListNode* receive;//此时进入循环的每一层都实现了temp接收head.next的结点进行…

HarmonyOS应用开发之DevEco Studio安装与初次使用

1、DevEco Studio介绍 DevEco Studio是基于IntelliJ IDEA Community开源版本打造&#xff0c;面向华为终端全场景多设备的一站式集成开发环境&#xff08;IDE&#xff09;&#xff0c;为开发者提供工程模板创建、开发、编译、调试、发布等E2E的HarmonyOS应用/服务的开发工具。…

MR实战:网址去重

文章目录 一、实战概述二、提出任务三、完成任务&#xff08;一&#xff09;准备数据1、在虚拟机上创建文本文件2、上传文件到HDFS指定目录 &#xff08;二&#xff09;实现步骤1、创建Maven项目2、添加相关依赖3、创建日志属性文件4、创建网址去重映射器类5、创建网址去重归并…

《现代C++语言核心特性解析》笔记(三)

二十四、三向比较&#xff08;C20&#xff09; 1. “太空飞船”&#xff08;spaceship&#xff09;运算符 C20标准新引入了一个名为“太空飞船”&#xff08;spaceship&#xff09;的运算符 <>&#xff0c;它是一个三向比较运算符。<> 之所以被称为“太空飞船”运…

洛谷——P1983 [NOIP2013 普及组] 车站分级(拓扑排序、c++)

文章目录 一、题目[NOIP2013 普及组] 车站分级题目背景题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 样例 #2样例输入 #2样例输出 #2 提示 二、题解基本思路&#xff1a;代码 一、题目 [NOIP2013 普及组] 车站分级 题目背景 NOIP2013 普及组 T4 题目描述 一条单…

imgaug库指南(五):从入门到精通的【图像增强】之旅

引言 在深度学习和计算机视觉的世界里&#xff0c;数据是模型训练的基石&#xff0c;其质量与数量直接影响着模型的性能。然而&#xff0c;获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此&#xff0c;数据增强技术应运而生&#xff0c;成为了解决这一问题的…

算法每日一题:统计重复个数 | 字符串

大家好&#xff0c;我是星恒 感觉好难呀呀呀&#xff01;今天是一道困难题目&#xff0c;思路挺简单&#xff0c;但是有些细节点不是很容易想通&#xff0c;建议大家多画图试一试&#xff0c;这样就会好理解许多 题目&#xff1a;leetcode 466定义 str [s, n] 表示 str 由 n 个…

深圳易图讯科技VR三维电子沙盘系统

易图讯VR三维电子沙盘系统是一种结合虚拟现实技术的地理信息系统。它通过高精度三维模型&#xff0c;真实再现了地理环境、建筑布局和地形地貌。用户可通过VR设备沉浸式体验这一虚拟世界&#xff0c;进行各种交互操作&#xff0c;如缩放、旋转、移动等。系统还支持实时数据更新…

软件测试关于adb命令⼤全

adb的全称为Android Debug Bridge 调试桥&#xff0c;是连接Android⼿机与PC端的桥梁&#xff0c;通过adb可以管理、操作模拟器和设备&#xff0c;如安装软件、 系统升级、运⾏shell命令等。 0. adb服务相关操作 adb kill-server #终⽌adb服务进程 adb start-server #重启ad…

当试图回复传入消息时,消息应用程序会闪烁

问题描述&#xff1a; Actual Results: Unable to reply for incoming message as Messaging app flickers and closes. Expected Results: User should be able to send reply for incoming messages. Reproduction Steps: Stay in home screen. Receive an incoming mes…

新一代爬取JavaScript渲染页面的利器-playwright(二)

接上文&#xff1a;新一代爬取JavaScript渲染页面的利器-playwright&#xff08;一&#xff09;   上文我们主要讲了Playwright的特点、安装、基本使用、代码生成的使用以及模拟移动端浏览&#xff0c;这篇我们主要讲下Playwright的选择器以及常见的操作方法。 6.选择器 我们…

Linux 进程(十) 进程替换

用fork创建子进程后执行的是和父进程相同的程序(但有可能执行不同的代码分支),子进程往往要调用一种exec*函数以执行另一个程序。当进程调用一种exec*函数时,该进程的用户空间代码和数据完全被新程序替换,从新程序的启动例程开始执行。调用exec*并不创建新进程,所以调用exec*前…

【Bootstrap学习 day13】

Bootstrap5 下拉菜单 下拉菜单通常用于导航标题内&#xff0c;在用户鼠标悬停或单击触发元素时显示相关链接列表。 基础的下拉列表 <div class"dropdown"><button type"button" class"btn btn-primary dropdown-toggle" data-bs-toggl…

虚幻UE 增强输入-第三人称模板增强输入分析与扩展

本篇是增强输入模块&#xff0c;作为UE5.0新增加的模块。 其展现出来的功能异常地强大&#xff01; 让我们先来学习学习一下第三人称模板里面的增强输入吧&#xff01; 文章目录 前言一、增强输入四大概念二、使用步骤1、打开增强输入模块2、添加IA输入动作2、添加IMC输入映射内…

安防监控EasyCVR视频融合/汇聚平台大华热成像摄像机智能告警上报配置步骤

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安…

第三届先进控制、自动化与机器人国际会议(ICACAR 2024) | Ei、Scopus双检索

会议简介 Brief Introduction 2024年第三届先进控制、自动化与机器人国际会议(ICACAR 2024) 会议时间&#xff1a;2024年5月24-26日 召开地点&#xff1a;中国重庆 大会官网&#xff1a;ICACAR 2024-2024 3rd International Conference on Advanced Control, Automation and Ro…

华为云CES监控与飞书通知

华为云负载均衡连接数监控与飞书通知 在云服务的日常运维中&#xff0c;持续监控资源状态是保障系统稳定性的关键步骤之一。本文通过一个实际案例展示了如何使用华为云的Go SDK获取负载均衡器的连接数&#xff0c;并通过飞书Webhook发送通知到团队群组&#xff0c;以便运维人员…

超维空间M1无人机使用说明书——31、基于模板匹配的物体识别功能

引言&#xff1a;ROS提供的物体识别功能包find_object_2d&#xff0c;该功能包用起来相对简单&#xff0c;只需要简单进行模板匹配即可。需要接显示器进行模板训练&#xff0c;远程比较卡&#xff0c;不建议 一、功能包find_object_2d简介 ROS的优点之一是有大量可以在应用程…