【MLOps】使用Ray缩放AI

Ray正在人工智能工程领域崭露头角,对扩展LLM和RL至关重要

Spark在数据工程中几乎是必不可少的。Ray正在人工智能工程领域崭露头角。

雷是伦敦大学学院Spark的继任者。Spark和Ray有很多相似之处,例如用于计算的统一引擎。但Spark主要专注于大规模数据分析,而Ray则是为机器学习应用程序设计的。

在这里,我将介绍Ray,并介绍如何使用Ray扩展大型语言模型(LLM)和强化学习(RL),然后总结Ray的怀旧和趋势。

Ray简介

Ray是一个开源的统一计算框架,可以轻松扩展人工智能和Python的工作负载,从强化学习到深度学习,再到模型调整和服务。

下面是Ray的最新架构。它主要有三个组件:Ray Core、Ray AI Runtime和Storage and Tracking。

Ray 2.x and Ray AI Runtime (AIR) (Source: January 2023 Ray Meetup)

Ray Core为构建和扩展分布式应用程序提供了少量核心原语(即任务、参与者、对象)。

Ray AI Runtime(AIR)是一个可扩展的统一ML应用工具包。AIR能够简单地扩展单个工作负载、端到端工作流和流行的生态系统框架,所有这些都只需使用Python。

AIR建立在Ray一流的预处理、培训、调整、评分、服务和强化学习库的基础上,将集成生态系统整合在一起。

Ray实现了工作负载从笔记本电脑到大型集群的无缝扩展。Ray集群由单个头节点和任意数量的连接辅助节点组成。工作节点的数量可以根据Ray集群配置指定的应用程序需求进行自动缩放。头节点运行自动缩放器。

我们可以提交作业以在Ray集群上执行,也可以通过连接到头部节点并运行Ray.init来交互使用集群。

启动并运行Ray很简单。下面将说明如何安装它。

安装Ray

$ pip install ray
████████████████████████████████████████ 100%
Successfully installed ray
$ python
>>>import ray; ray.init()
 ... INFO worker.py:1509 -- Started a local Ray instance. View the dashboard at 127.0.0.1:8265 ...

Install Ray libraries

pip install -U "ray[air]" # installs Ray + dependencies for Ray AI Runtime
pip install -U "ray[tune]"  # installs Ray + dependencies for Ray Tune
pip install -U "ray[rllib]"  # installs Ray + dependencies for Ray RLlib
pip install -U "ray[serve]"  # installs Ray + dependencies for Ray Serve

此外,Ray可以在Kubernetes和云虚拟机上大规模运行。

使用Ray缩放LLM和RL

ChatGPT是一个重要的人工智能里程碑,具有快速增长和前所未有的影响力。它建立在OpenAI的GPT-3大型语言模型家族(LLM)的基础上,采用了Ray。

OpenAI首席技术官兼联合创始人Greg Brockman表示,在OpenAI,我们正在解决世界上一些最复杂、最苛刻的计算问题。Ray为这些最棘手的问题提供了解决方案,并使我们能够比以前更快地大规模迭代。

在SageMaker培训平台的240 ml.p4d.24个大型实例上训练GPT-3大约需要25天。挑战不仅在于处理,还在于记忆。Wu Tao 2.0似乎只需要1000多个GPU来存储其参数。

训练ChatGPT,包括像GPT-3这样的大型语言模型,需要大量的计算资源,估计要花费数千万美元。通过授权ChatGPT,我们可以看到Ray的可扩展性。

Ray试图解决具有挑战性的ML问题。它从一开始就支持培训和服务强化学习模式。

让我们用Python编写代码,看看如何训练大规模的强化学习模型,并使用Ray serve为其提供服务。

步骤1:安装强化学习策略模型的依赖项。

!pip install -qU "ray[rllib,serve]" gym

第二步:定义大规模强化学习策略模型的培训、服务、评估和查询。

import gym
import numpy as np
import requests

# import Ray-related libs
from ray.air.checkpoint import Checkpoint
from ray.air.config import RunConfig
from ray.train.rl.rl_trainer import RLTrainer
from ray.air.config import ScalingConfig
from ray.train.rl.rl_predictor import RLPredictor
from ray.air.result import Result
from ray.serve import PredictorDeployment
from ray import serve
from ray.tune.tuner import Tuner


# train API for RL by specifying num_workers and use_gpu
def train_rl_ppo_online(num_workers: int, use_gpu: bool = False) -> Result:
    print("Starting online training")
    trainer = RLTrainer(
        run_config=RunConfig(stop={"training_iteration": 5}),
        scaling_config=ScalingConfig(num_workers=num_workers, use_gpu=use_gpu),
        algorithm="PPO",
        config={
            "env": "CartPole-v1",
            "framework": "tf",
        },
    )

    tuner = Tuner(
        trainer,
        _tuner_kwargs={"checkpoint_at_end": True},
    )
    result = tuner.fit()[0]
    return result

# serve RL model
def serve_rl_model(checkpoint: Checkpoint, name="RLModel") -> str:
    """ Serve an RL model and return deployment URI.

    This function will start Ray Serve and deploy a model wrapper
    that loads the RL checkpoint into an RLPredictor.
    """
    serve.run(
        PredictorDeployment.options(name=name).bind(
            RLPredictor, checkpoint
        )
    )
    return f"http://localhost:8000/"

# evaluate RL policy
def evaluate_served_policy(endpoint_uri: str, num_episodes: int = 3) -> list:
    """ Evaluate a served RL policy on a local environment.

    This function will create an RL environment and step through it.
    To obtain the actions, it will query the deployed RL model.
    """
    env = gym.make("CartPole-v1")

    rewards = []
    for i in range(num_episodes):
        obs = env.reset()
        reward = 0.0
        done = False
        while not done:
            action = query_action(endpoint_uri, obs)
            obs, r, done, _ = env.step(action)
            reward += r
        rewards.append(reward)

    return rewards

# query API on the RL endpoint
def query_action(endpoint_uri: str, obs: np.ndarray):
    """ Perform inference on a served RL model.

    This will send an HTTP request to the Ray Serve endpoint of the served
    RL policy model and return the result.
    """
    action_dict = requests.post(endpoint_uri, json={"array": obs.tolist()}).json()
    return action_dict

步骤3:现在训练模型,使用Ray serve为其服务,评估服务的模型,最后关闭Ray serve。

# training in 20 workers using GPU
result = train_rl_ppo_online(num_workers=20, use_gpu=True)

# serving
endpoint_uri = serve_rl_model(result.checkpoint)

# evaluating
rewards = evaluate_served_policy(endpoint_uri=endpoint_uri)

# shutdown
serve.shutdown()

Ray怀旧与潮流

Ray是作为UCB RISELab的一个研究项目启动的。RISELab是Spark诞生地AMPLab的继任者。

Ion Stoica教授是Spark和Ray的灵魂。他开始以Spark和Anyscale为核心产品创建Databricks。

我有幸在RISELab的早期阶段与研究员合作,见证了Ray的诞生。

Ray's project post at the conference 2017 (Photo courtesy by author)

以上是雷在2017年的项目帖子。我们可以看到,它非常简单,但对于人工智能应用程序来说功能强大。

雷是一艘恒星飞船,正在增殖。它是增长最快的开源之一,正如下面Github的星级数量所示。

Ray正在人工智能工程领域崭露头角,是扩展LLM和RL的重要工具。Ray为未来巨大的人工智能机会做好了准备。

本文:【MLOps】使用Ray缩放AI | 开发者开聊

自我介绍

  • 做一个简单介绍,酒研年近48 ,有20多年IT工作经历,目前在一家500强做企业架构.因为工作需要,另外也因为兴趣涉猎比较广,为了自己学习建立了三个博客,分别是【全球IT瞭望】,【架构师研究会】和【开发者开聊】,有更多的内容分享,谢谢大家收藏。
  • 企业架构师需要比较广泛的知识面,了解一个企业的整体的业务,应用,技术,数据,治理和合规。之前4年主要负责企业整体的技术规划,标准的建立和项目治理。最近一年主要负责数据,涉及到数据平台,数据战略,数据分析,数据建模,数据治理,还涉及到数据主权,隐私保护和数据经济。 因为需要,比如数据资源入财务报表,另外数据如何估值和货币化需要财务和金融方面的知识,最近在学习财务,金融和法律。打算先备考CPA,然后CFA,如果可能也想学习法律,备战律考。
  • 欢迎爱学习的同学朋友关注,也欢迎大家交流。全网同号【架构师研究会】

欢迎收藏  【全球IT瞭望】,【架构师酒馆】和【开发者开聊】.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/294782.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SSMBUG汇总

20240103 通用,驼峰命名法,mybatis。 mybatis入门程序中, // 获取对象的顺序为:SqlSessionFactoryBuild-》SqlSessionFactory-》SqlSessionSqlSessionFactoryBuilder sqlSessionFactoryBuilder new SqlSessionFactoryBuilder();I…

数字孪生与大数据和分析技术的结合

数字孪生与大数据和分析技术的结合可以为系统提供更深入的见解、支持实时决策,并优化模型的性能。以下是数字孪生在大数据和分析技术中的一些应用,希望对大家有所帮助。北京木奇移动技术有限公司,专业的软件外包开发公司,欢迎交流…

IPFoxy:2024第一季度跨境营销重要节日,亚马逊跨境人快收藏

参照亚马逊的销售日历,我们整理出了亚马逊2024年第一季度的跨境重点营销节日,快收藏起来,为2024年大卖做准备吧! 一、一月 1、元旦(1.1) 覆盖站点:美国站/加拿大站/欧洲站/新加坡站/墨西哥站热…

【LeetCode每日一题】2397. 被列覆盖的最多行数

2024-1-4 文章目录 [2397. 被列覆盖的最多行数](https://leetcode.cn/problems/maximum-rows-covered-by-columns/)方法:二进制枚举 2397. 被列覆盖的最多行数 方法:二进制枚举 1.获取矩阵的行数和列数,并创建一个大小为m的一维数组rows来保…

leetcode:2784. 检查数组是否是好的(python3解法)

难度:简单 给你一个整数数组 nums ,如果它是数组 base[n] 的一个排列,我们称它是个 好 数组。 base[n] [1, 2, ..., n - 1, n, n] (换句话说,它是一个长度为 n 1 且包含 1 到 n - 1 恰好各一次,包含 n 两…

理解二叉树的遍历(算法村第七关白银挑战)

二叉树的前序遍历 144. 二叉树的前序遍历 - 力扣(LeetCode) 给你二叉树的根节点 root ,返回它节点值的 前序 遍历。 示例 1: 输入:root [1,null,2,3] 输出:[1,2,3]解 LeetCode以及面试中提供的方法可能…

关于“Python”的核心知识点整理大全60

目录 19.4 小结 第 20 章 设置应用程序的样式并对其 进行部署 20.1 设置项目“学习笔记”的样式 20.1.1 应用程序 django-bootstrap3 settings.py settings.py 20.1.2 使用 Bootstrap 来设置项目“学习笔记”的样式 20.1.3 修改 base.html 1. 定义HTML头部 base.html…

如何通过内网穿透实现无公网IP远程访问内网的Linux宝塔面板

文章目录 一、使用官网一键安装命令安装宝塔二、简单配置宝塔,内网穿透三、使用固定公网地址访问宝塔 正文开始前给大家推荐个网站,前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。…

免费文件格式转换器——Fconvertio!

项目链接:https://fostmar.online/fconvertio.html 特点: 完全免费支持文件格式多界面极为简单 支持格式转换: gifjpegjpgpngpdfdocdocxodtrtfxlsxlsxcsvodspptpptxodptxtziprarmp3wavmp4avihtmlsql

影响助听器使用寿命的因素

至少有九个因素会影响助听器的平均寿命: 用于制造助听器的材料清洁频率佩戴助听器的地方助听器的存放方式助听器样式一个人的身体生理学维护频率技术进步独特的听力需求 1.用于制作助听器的材料 虽然助听器的设计经久耐用,但由塑料、金属、硅、聚合物…

《学周刊》是什么级别的期刊?是正规期刊吗?能评职称吗?

《家长》以马列主义、思想、邓小平理论和“三个代表”重要思想为指导,全面贯彻党的教育方针和“双百方针”,理论联系实际,开展教育科学研究和学科基础理论研究,交流科技成果,促进学院教学、科研工作的发展,…

安卓平板电脑,5G通讯加持,帮你的通讯效率提提速

安卓平板电脑,作为一种集通讯、娱乐、工作于一体的便携设备,近年来随着5G通讯技术的发展,其在通讯效率方面迎来了新的提升。5G通讯加持,不仅为安卓平板电脑带来了更快速、更稳定的数据传输能力,也为用户的通讯效率提供…

云卷云舒:【实战篇】Redis迁移

1. 简介 Remote Dictionary Server(Redis)是一个由Salvatore Sanfilippo写的key-value存储系统,是一个开源的使用ANSIC语言编写、遵守BSD协议、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。 2. 迁移原理 redis-sh…

GPU测试-GPUburn

很早就使用过GPU burn做个类似稳定性 压力性得对GPU进行相应得测试 这里再回顾一下 开源链接如下 https://github.com/wilicc/gpu-burn 简单得步骤主要是 先安装gpu得driver cuda 并进行验证如下 我理解其实按照gpu的 driver就可以了 如果是使用docker的情况下 安装github下…

使用printJS使网页打印成PDF、网页html结合printJS导出为pdf

先放几个参考链接 感谢! Vue使用PrintJS实现页面打印功能_vue print.js 设置打印pdf的大小-CSDN博客 前台导出pdf经验汇总 (html2canvas.js和浏览器自带的打印功能-print.js)以及后台一些导出pdf的方法_iqc后台管理系统怎么做到导出pdf-CSD…

钉钉审批流程解读

组织机构 部门 部门可以创建下级部门部门可以设置部门主管,可以是多人部门可以默认构建,沟通群可以设置部门信息,比如电话、简介可以设置部门的可见性,比如隐藏本部门,本部门将不会在组织机构、搜索,个人…

Git如何将多个commit合并一个commit

问题场景:我在fork的仓库提交多个commit后,准备向原仓库提交pr,但是原仓库要求一个pr一个commit,因此需要先将这些commit合并为一个。 1.先拿到要合并的commit中最早的一个的commit id,然后进入仓库,使用如…

Android linphone-android sdk设置语音编码问题

1.遇到的问题 今天遇到linphone-android sdk需要解决语音编码问题,需要指定编码。查了下配置,里面没有发现类似的配置。 ## Start of factory rc # This file shall not contain path referencing package name, in order to be portable when app is r…

微机原理笔记(4)

一、数据传送指令 1、数据传送指令MOV 语句格式:MOV OPD,OPS功能:将源操作数传入目的地址,源地址内容不变。即(OPS)-->OPD 注意: MOV指令不改变源操作数内容,不影响标志位。源…

敏捷研发管理流程及示例

Leangoo领歌是一款永久免费的专业的敏捷开发管理工具,提供端到端敏捷研发管理解决方案,涵盖敏捷需求管理、任务协同、进展跟踪、统计度量等。 Leangoo领歌上手快、实施成本低,可帮助企业快速落地敏捷,提质增效、缩短周期、加速创新…