[每周一更]-(第50期):Go的垃圾回收GC

在这里插入图片描述

参考文章:

  • https://juejin.cn/post/7111515970669117447
  • https://draveness.me/golang/docs/part3-runtime/ch07-memory/golang-garbage-collector/
  • https://colobu.com/2022/07/16/A-Guide-to-the-Go-Garbage-Collector/
  • https://liangyaopei.github.io/2021/01/02/golang-gc-intro/
  • https://xargin.com/impl-of-go-gc/
  • https://www.bookstack.cn/read/qcrao-Go-Questions/spilt.5.GC-GC.md

什么是GC?

Go语言的垃圾回收机制Garbage Collection,简称 GC

在传统编程语言中我们需要关注对象的分配位置,要自己去选择对象分配在堆还是栈上,
但在 Go 这门有 GC 的语言中,集成了逃逸分析功能,帮助我们自动判断对象应该在堆上还是栈上,可以使用 go build -gcflags="-m" 来观察逃逸分析的结果

GC的原理是什么?

Go语言的垃圾回收器采用了并发三色标记清除算法(Concurrent Tri-Color Mark-And-Sweep),(Stop-the-World,简称STW,指的是GC事件发生过程中,会产生应用程序的停顿。)尽可能减少STW(stop the world)时间,
以降低吞吐为代价换取低延迟,实现了高效的垃圾回收。
标记清除算法的基本原理是,垃圾回收器将所有的存活对象标记为“活”的,未被标记的对象则被认为是垃圾。经典的标记清除算法通常分为两个阶段:

  • 标记阶段:垃圾回收器从根对象开始,遍历所有可达对象,并将它们标记为“活”的。
  • 清除阶段:垃圾回收器从堆的起始地址开始遍历,将未被标记的对象清除,回收内存。

Go语言的垃圾回收器采用了三色标记法(Tri-Color Marking),将堆上的内存对象分为三种颜色

  • 白色:未被标记为“活”的对象,是潜在的垃圾,后续可能会被GC回收。
  • 灰色:待扫描的对象,当扫描某个灰色对象时,GC会将其标记为黑色,然后将该对象指向的所有对象都标记为灰色,待后续标记。
  • 黑色:被标记为“活”的对象,在这轮GC中不会被回收。

垃圾回收器开始工作时不存在黑色对象,垃圾回收器会将根对象标记为灰色,并从根对象(通常是栈对象和全局对象)开始遍历。垃圾回收器会将灰色对象标记为黑色,
并将该对象指向的对象标记为灰色。垃圾回收器重复这个过程,直到所有可达对象都被标记为黑色。最后,垃圾回收器清除所有未被标记为黑色的对象,即清除所有白色对象。

GC如何优化?

优化GC的开销是提高系统性能和响应速度的重要手段。

缩短STW时间

Go GC触发时机大体分为三种:

  • 手动触发:调用runtime.GC()
  • 常规触发:Target heap memory = Live heap + (Live heap + GC roots) * GOGC / 100
  • sysmon后台周期性强制触发GC
减少堆内存的分配和释放

GC开销大的根源在于heap object多,Go的每轮GC都是FullGC,每轮都要将所有heap object标记(mark)一遍,
即便大多数heap object都是长期alive的,因此,一个直观的降低GC开销的方法就是减少heap object的数量,即减少alloc。

  • 把小对象聚合到一个结构体中,然后做一次分配即可
  • 内存空间重用,如:sync.Pool

常见的GC

  • 引用计数法
    根据对象自身的引用计数来回收,当引用计数归零时进行回收,但是计数频繁更新会带来更多开销,且无法解决循环引用的问题。
    • 优点:简单直接,回收速度快
    • 缺点:需要额外的空间存放计数,无法处理循环引用的情况;
  • 标记清除法
    标记出所有不需要回收的对象,在标记完成后统一回收掉所有未被标记的对象。
    • 优点:简单直接,速度快,适合可回收对象不多的场景
    • 缺点:会造成不连续的内存空间(内存碎片),导致有大的对象创建的时候,明明内存中总内存是够的,但是空间不是连续的造成对象无法分配;
  • 复制法
    复制法将内存分为大小相同的两块,每次使用其中的一块,当这一块的内存使用完后,将还存活的对象复制到另一块去,然后再把使用的空间一次清理掉
    • 优点:解决了内存碎片的问题,每次清除针对的都是整块内存,但是因为移动对象需要耗费时间,效率低于标记清除法;
    • 缺点:有部分内存总是利用不到,资源浪费,移动存活对象比较耗时,并且如果存活对象较多的时候,需要担保机制确保复制区有足够的空间可完成复制;
  • 标记整理
    标记过程同标记清除法,结束后将存活对象压缩至一端,然后清除边界外的内容
    • 优点:解决了内存碎片的问题,也不像标记复制法那样需要担保机制,存活对象较多的场景也使适用;
    • 缺点:性能低,因为在移动对象的时候不仅需要移动对象还要维护对象的引用地址,可能需要对内存经过几次扫描才能完成;
  • 分代式
    将对象根据存活时间的长短进行分类,存活时间小于某个值的为年轻代,存活时间大于某个值的为老年代,永远不会参与回收的对象为永久代。
    并根据分代假设(如果一个对象存活时间不长则倾向于被回收,如果一个对象已经存活很长时间则倾向于存活更长时间)对对象进行回收。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/293927.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【网络编程】——基于TCP协议实现回显服务器及客户端

个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【网络编程】【Java系列】 本专栏旨在分享学习网络编程的一点学习心得,欢迎大家在评论区交流讨论💌 目录 一、TCP实…

Python | Iter/genartor | 一文了解迭代器、生成器的含义\区别\优缺点

前提 一种技术的出现,需要考虑: 为了实现什么样的需求;遇到了什么样的问题;采用了什么样的方案;最终接近或达到了预期的效果。 概念 提前理解几个概念: 迭代 我们经常听到产品迭代、技术迭代、功能迭代…

echarts 切换时出现上一次图形残留。

先说结果:悬浮高亮导致。这可能使echarts的bug。 正常情况出现这种问题,一般是setOption 中没有配置notMerge 导致新的配置与旧配置合并。 但是我这里始终配置notMerge: true,但仍然出现这种问题。 最后发现与鼠标悬浮有关。 环境 echar…

英飞凌TC3xx之一起认识GTM(九)GTM相关知识简述(CMU,CCM,TBU,MON)

英飞凌TC3xx之一起认识GTM(九)GTM相关知识简述(CMU,CCM,TBU,MON) 1 时钟管理单元(CMU)2 集群配置模块(CCM)3 时基单元(TBU)4 监控单元(MON)5 总结由前文的各篇内容,开发者已经知道如何使用GTM的大部分功能,在这些功能中,都需要一个信息就是fGTM 的数据,我们在前…

全网唯一值得推荐的C/C++框架和库

全网唯一值得推荐的C/C框架和库 C程序员开发指南 ​ 关注我,天天分享C/C开发技术干货! ​关注他 30 人赞同了该文章 ​ 目录 收起 标准库 C通用框架和库 人工智能 异步事件循环 音频 生态学 压缩 并发性 容器 数据库 调试 游戏引擎 图…

(03)光刻——半导体电路的绘制

01、绘制精细电路的第一步 金属-氧化物半导体场效应晶体管(MOSFET)的革命,让我们可以在相同面积的晶圆上同时制造出更多晶体管。MOSFET体积越小,单个 MOSFET的耗电量就越少,还可以制造出更多的晶体管,让其发挥作用,可谓是一举多得。可见,制造更小的MOSFET成了关键因素…

原来圣诞树可以这么做

先看结果 从上到下依次是: 2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 ... 依次排下去,最后加4个单位数的数字 原来代码的世界里还有这个美。^V^

十大电脑屏幕监控软件超全盘点!

电脑屏幕已经成为我们工作、学习和生活中不可或缺的一部分。然而,随着人们对电脑使用的日益频繁,电脑屏幕监控软件也应运而生,成为了企业和个人用户进行电脑管理和监控的重要工具。 本文将为您盘点十大电脑屏幕监控软件,帮助您了…

软件测试基础理论学习-常见软件开发模型

瀑布模型 背景 瀑布模型的概念最早在1970年由软件工程师Winston W. Royce在其论文《Managing the Development of Large Software Systems》中提出。Royce虽然没有明确提出“瀑布模型”这个术语,但他描述了一种线性的、阶段性的开发流程,各个阶段之间具…

技术概述:ARMv8体系结构

John Goodacre, Director Program Management ARM Processor Division, November 2011 背景:ARM体系结构 从ARM精简指令集体系结构提出到现在已经有20多年了;ARMv7系列处理器是在ARMv4基础上设计的,随着ARMv7系列处理器大量应用&#xff0…

图像分割-Grabcut法(C#)

版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。 本文的VB版本请访问:图像分割-Grabcut法-CSDN博客 GrabCut是一种基于图像分割的技术,它可以用于将图像中的…

李沐机器学习系列5---循环神经网络

1 Introduction 对于样本的分析,通过全连接层处理表格数据,通过卷积神经网络处理图像数据;第一种假设,所有数据都是独立同分布的RNN 处理序列信号 序列数据的更多场景 1)用户使用习惯具有时间的先后性 2)外…

【Path的使用】Node.js中的使用Path模块操作文件路径

😁 作者简介:一名大四的学生,致力学习前端开发技术 ⭐️个人主页:夜宵饽饽的主页 ❔ 系列专栏:Node.js 👐学习格言:成功不是终点,失败也并非末日,最重要的是继续前进的勇…

Leetcode算法系列| 12. 整数转罗马数字

目录 1.题目2.题解C# 解法一:模拟C# 解法二:硬编码数字 1.题目 罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如&#xff0…

运算放大器(六):I-V 转换

1、跨阻放大器 放大器类型是根据其输入-输出信号的类型定义。假设放大器增益 (X:输入,Y:输出)。在电学范畴,由于用电压或电流表征一个信号,当输入信号为电流,输出信号为电压时&#…

MacOS14系统中Topaz Photo AI无法启动解决方法

MacOS14系统,在使用Topaz Photo AI是时无法启动,或者在 Mac电脑上导入图像后,Topaz Photo AI 应用程序窗口可能会冻结,怎么解决呢? 退出Topaz Photo AI for mac软件 回到电脑桌面,点击菜单栏前往-前往文件…

Prometheus 不能访问k8s的中的一些metrics的问题(controller-manager、scheduler、etcd)

主要有三个点 controller-manager、scheduler、etcd 参考: https://www.cnblogs.com/ltaodream/p/15448953.html kube-scheduler 在每台master节点执行 vim /etc/kubernetes/manifests/kube-scheduler.yaml 将 --bind-address127.0.0.1 改为 --bind-address…

Image - 体积最小的 base64 encode 1*1透明图片,透明背景图片base64编码

背景 前端开发时&#xff0c;有些<img>标签的src属性的值来源于接口&#xff0c;在接口获取结果之前&#xff0c;这个src应该设置为什么呢&#xff1f; 误区&#xff1a;设置为# 有人把src设置为<img src"#" />。 这是有问题的&#xff0c;浏览器解析…

理解UML中的依赖关系

理解UML中的依赖关系 在面向对象的设计中&#xff0c;理解各种类之间的关系对于构建一个清晰、可维护的系统至关重要。UML&#xff08;统一建模语言&#xff09;为我们提供了一种可视化这些关系的方式。今天&#xff0c;我们将深入探讨UML中的依赖关系&#xff08;Dependency&a…

脑电范式学习(一):Psychopy安装

脑电范式学习&#xff08;一&#xff09;&#xff1a;Psychopy安装 1 引言2 Psychopy软件3 安装教程4 花活儿5 总结 1 引言 可能有人会疑惑&#xff1a;为什么要去学Psychopy&#xff1f;Psychopy有什么好的&#xff1f; 首先&#xff0c;要告诉大家这么一个情况&#xff1a;现…