【实战】minigpt4的体验和微调

MiniGPT-4

https://github.com/vision-cair/minigpt-4

1 环境配置

1.1 安装环境

git lfs install
//如果报错 :git: 'lfs' is not a git command. See 'git --help'.
//尝试使用:
sudo apt-get install git-lfs
git lfs install

1.2 准备Vicuna权重

(1)下载 Vicuna’s delta weight

git lfs install
git clone https://huggingface.co/lmsys/vicuna-13b-delta-v0  # more powerful, need at least 24G gpu memory
# or
git clone https://huggingface.co/lmsys/vicuna-7b-delta-v0  # smaller, need 12G gpu memory

(2)填写表格以获得原始的LLAMA-7B或LLAMA-13B权重
这个东西其实也不用这么老实,直接huggingface上拉下来就行
(3)下载兼容library

pip install git+https://github.com/lm-sys/FastChat.git@v0.1.10

(4)创建最终权重

python -m fastchat.model.apply_delta --base /path/to/llama-13bOR7b-hf/  --target /path/to/save/working/vicuna/weight/  --delta /path/to/vicuna-13bOR7b-delta-v0/

同时修改minigpt4/configs/models/minigpt4.yaml中llama_model的路径
报错:

Tokenizer class LLaMATokenizer does not exist or is not currently imported.

参考#59将llama-13b-hf/tokenizer_config.json 中的"tokenizer_class": “LLaMATokenizer” 改成 “tokenizer_class”: “LlamaTokenizer”

1.3 下载预训练权重

百度网盘: Vicuna 7B:

谷歌:Vicuna 13B
https://drive.google.com/file/d/1a4zLvaiDBr-36pasffmgpvH5P7CKmpze/view
Vicuna 7B:
https://drive.google.com/file/d/1RY9jV0dyqLX-o38LrumkKRh6Jtaop58R/view

同时修改配置文件中路径到实际下载路径

2. 体验

python demo.py --cfg-path eval_configs/minigpt4_eval.yaml  --gpu-id 0

在这里插入图片描述

3.微调

预训练贫困小孩就算了,不过就算是微调至少要16G

train_configs/minigpt4_stage2_finetune.yaml配置

  weight_decay: 0.05
  max_epoch: 5
  iters_per_epoch: 20
  batch_size_train: 1 #12
  batch_size_eval: 1 #12
  num_workers: 2
  warmup_steps: 200

修改两个路径
(1)train_configs/minigpt4_stage2_pretrain.yaml为第一阶段的训练checkpoint
(2minigpt4/configs/datasets/cc_sbu/align.yaml修改为数据集路径

官方有提供训练集和第一阶段预训练模型

训练集格式如下:

{“annotations”: [{“image_id”: “2”, “caption”: “The image shows a man
fishing on a lawn next to a river with a bridge in the background.
Trees can be seen on the other side of the river, and the sky is
cloudy.”}
对应图片:
在这里插入图片描述

NUM_GPU为自己的gpu数量

torchrun --nproc-per-node NUM_GPU train.py --cfg-path train_configs/minigpt4_stage2_finetune.yaml

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/29120.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

专访泛境科技:如何借助3DCAT实时云渲染打造元宇宙解决方案

随着5G、VR/AR等技术的发展,元宇宙(Metaverse)这一概念越来越受到关注。元宇宙是一个由虚拟世界构成的网络空间,其中人们可以通过数字化的身份和形象进行各种社交、娱乐、创作和商业活动。元宇宙的核心是虚拟场景,它是…

高考答题卡怎么被机器识别?基于OpenCV答题卡识别模拟-米尔ARM+FPGA异构开发板

本篇测评由优秀测评者“筑梦者与梦同行”提供。 01. 前言MYD-JX8MMA7SDK发布说明 根据下图文件内容可以知道myir-image-full系统支持的功能,其支持OpenCV,也就不用在格外安装相关驱动包等,省了很多事情。 02. MYD-JX8MMA7软件评估指南 本文…

【C语言复习】第一篇、关于我的C语言的复习路线

目录 第一部分、前言 第二部分、学习视频 第三部分、我的建议 第一部分、前言 首先想谈一下为啥都读研究生的我还在学习C语言😂,说起来我认为挺搞笑的,一句话解释就是:本科上课的时候,耳朵打苍蝇去,哈哈。…

solr快速上手:常用查询语法(八)

0. 引言 solr作为搜索引擎,就像我们使用mysql一样,在日常业务中,更多接触的则是各类操作语法,所以今天,我们再来学习solr的常用查询语法,为大家在工作中最基本的solr查询打下基础。 solr快速上手&#xff…

NLP学习笔记六-lstm模型

NLP学习笔记六-lstm模型 上一篇我们讲的是simple RNN模型,那么其实lstm模型更像是simple RNN模型的改进或者变种。 对于lstm模型,先看一下总的网络结构图: 我们再看下面一张图: 其实lstm模型的思想是建立在simple RNN模型上的…

【SpringBoot】整合Elasticsearch 快速入门操作索引

官网操作文档:Elasticsearch Clients | Elastic 踩坑太多了。。。这里表明一下Spring Boot2.4以上版本可能会出现问题,所以我降到了2.2.1.RELEASE。对于现在2023年6月而言,Es版本已经到了8.8,而SpringBoot版本已经到了3.x版…

Vue配置proxy代理,但接口报错2007 bad domain

1、排查proxy代理配置是否有误 排查 proxyTable 对象中配置的 target 是否正确。若正确,那可能就是请求头的问题。 无特殊配置的情况下,请求头是这样子的: Host 和 Referer 是本地地址,如果后端增加 CSRF 防御机制,…

to be delete

一、grafana版本升级 1.1 还是先跟着官网简单走一波 建议经常升级Grafana,以获取最新的修补程序和增强功能。 为了实现这一点,Grafana升级向后兼容,并且升级过程简单快捷。升级通常是安全的(在许多次要版本和一个主要版本之间&a…

使用JSAPl来做一个倒计时的效果

今天的小案例需要做一个倒计时的效果 我们的时分秒需要一直进行倒计时&#xff0c;然后我们的页面颜色需要根据定时器的操作来进行更换&#xff0c;首先我们还是可以来分析一下我们的HTML步骤 <div class"countdown"><p class"next">今天是22…

线程的创建和使用(一)

1、线程 1.1、线程的概念 一个线程就是一个 "执行流". 每个线程之间都可以按照顺讯执行自己的代码. 多个线程之间 "同时" 执行着多份代码. 1.2、创建线程 方法一&#xff1a;继承Thread类 public class Exe_01 {public static void main(String[] args…

[论文阅读笔记76]GPT Understands, Too(P-tuning)

1. 基本信息 题目论文作者与单位来源年份GPT Understands, Too清华大学 Citations, References 论文链接&#xff1a;https://arxiv.org/pdf/2103.10385.pdf 论文代码&#xff1a; 2. 要点 研究主题问题背景核心方法流程亮点数据集结论论文类型关键字微调大模型采用传统微…

什么是HMI和SCADA?两者有什么区别

前言 几十年来&#xff0c;工业控制系统在工业自动化中发挥了重要作用&#xff0c;它允许过程制造商从生产车间采集、分析、处理数据。 在当今瞬息万变的工业环境中&#xff0c;制造商和公用事业公司必须采用现代HMI/SCADA和数字化转型&#xff0c;以跟上变化的步伐&#xff0…

Unity制作二次元卡通渲染角色材质——5、脸部的特殊处理

Unity制作二次元材质角色 回到目录 大家好&#xff0c;我是阿赵。 这里继续讲二次元角色材质的制作。这次是讲头部的做法。 1、脸部 之前在分析资源的时候&#xff0c;其实已经发现了这个模型的脸部法线有问题&#xff0c;导致在做光照模型的时候&#xff0c;脸部很奇怪。 把f…

NLP:词义分布的空间维度——从文本符号到词向量表征

自然语言处理的前提是文本表示&#xff08;Representation&#xff09;&#xff0c;即如何将人类符号化的文本转换成 计算机所能“理解”的表征形式。早期的自然语言表征主要采用离散表示。近年来&#xff0c;随着深度 学习的不断发展&#xff0c;基于神经网络的分布式词向量技…

概率论:方差、标准差、协方差、皮尔逊相关系数、线性相关

方差和标准差&#xff1a; 一个随机变量&#xff0c;的值的变化程度可以用方差计算&#xff1a; &#xff1b;其中 是期望。 另外一种等价表达式&#xff1a; 其中为均值&#xff0c;N为总体例数 我们举个例子&#xff1a; 服从均一分布&#xff0c;取值为0.1&#xff0c;0…

SpringSecurity多源认证之全部交给spring容器

文章目录 一. 前言二. 配置流程2.1 SecurityConfig.class2.2 JwtAuthenticationTokenFilter2.3 AuthenticationManagerProcessingFilter 疑问 一. 前言 相关文章: 认证/支付/优惠劵策略模式-security多源认证 这篇文章没有将自定义的认证管理器注入容器. spring-security2.6.…

CSS基础学习--7 fonts字体

一、CSS 字体 CSS字体属性定义字体系列&#xff0c;加粗&#xff0c;大小&#xff0c;文字样式。 二、字体系列 font-family 属性设置文本的字体系列 font-family 属性应该设置几个字体名称作为一种"后备"机制&#xff0c;如果浏览器不支持第一种字体&#xff0c;…

C++入门前必看,超详细

目录 前言 一.C的关键字 二.命名空间 2.1命名空间定义 2.2命名空间的使用 三.C的输入及输出 四.缺省参数 4.1概念 4.2缺省参数分类 4.3缺省参数的注意点 五.引用 5.1 概念 5.2引用的特性 六.内联函数 6.1概念 6.2内联函数的特性 七.auto 7.1auto概念 7.2auto的…

Unity入门5——Camera

一、参数面板 二、参数介绍 1. Clear Flags&#xff1a;清除背景 Skybox&#xff1a;天空盒背景&#xff08;通常用来做 3D 游戏&#xff09; Solid Color&#xff1a;使用 Background 颜色填充&#xff08;通常设置为全黑或全白&#xff0c;2D 使用&#xff09; Depth Only&am…

APP测试面试题快问快答(四)

16.App测试的实时日志如何获取&#xff1f; 考察点&#xff1a;是否有移动app测试的日志获取相关经验 一般可以通过以下方式获取&#xff1a; 1.可以使用adb命令&#xff1a;adb logcat | findstr "com.sankuai.meituan" >d:\test.txt 2.用ddms抓取&#xff0…