机器学习:贝叶斯估计在新闻分类任务中的应用(实验报告)

文章摘要

随着互联网的普及和发展,大量的新闻信息涌入我们的生活。然而,这些新闻信息的质量参差不齐,有些甚至包含虚假或误导性的内容。因此,对新闻进行有效的分类和筛选,以便用户能够快速获取真实、有价值的信息,成为了一个重要的课题。在这个背景下,机器学习技术应运而生,其中贝叶斯估计作为一种强大的概率推断方法,在新闻分类任务中发挥着重要作用。

在本篇文章中,使用搜狗实验室提供的新闻数据集,并且通过贝叶斯估计来对整理后的新闻数据集进行分类任务,大体流程如下:1、新闻数据集处理。2、文本分词。3、去停用词。4、构建文本特征。5、基于贝叶斯算法来完成最终的分类任务。

另外,本文除了列出了核心代码外,还给出了可执行代码以及所用到的数据源,具体看附录。

知识准备

1.朴素贝叶斯算法

输入:训练数据T=\{(x_{1},y_{1}),(x_{2},y_{2}),...,(x_{n},y_{n})\},其中x_{i}=(x^{1}_{i},x^{2}_{i},x^{3}_{i},x^{4}_{i},...,x^{n}_{i})^{T}

x^{j}_{i}是第i个样本的第j个特征,x_{i}^{(j)}\in{a_{j1},a_{j2},...a_{jS_{j}}}a_{jl}是第j个特征可能取的第l

个值,j=1,2,...,n,l=1,2,..,S_{j},y_{j}\in{c_{1},c_{2},...,c_{k}};;实例x

输出:实例x的分类,其中K代表分类的种类有多少。

为了避免极大似然估计中概率值为0的那种情况,这里引入了常数\lambda。具体地,条件概率的贝叶斯估计是

                                 

式中\lambda>=0。等价于在随机变量各个取值的频数上赋予一个正数\lambda>0。上式为一种概率分布。取常数\lambda=1时,这是称为拉普拉斯平滑。显然对任何l=1,2,..,S_{j} , k=1,2,...,K,有

 同样,先验概率的贝叶斯估计是

                                                    

2.停用词(库)

这里我们得先考虑一个问题,一篇文章是什么主题应该是由其内容中的一些关键词来决定的,比如这里的车展跑车发动机等,这些词我们一看就知道跟汽车相关的。但是另一类词,今天‘3月份等,这些词给我们的感觉好像既可以在汽车相关的文章中使用,也可以在其他类型的文章使用,就把它们称作停用词,也就是我们需要过滤的目标。在data文件夹中,给出了多个停用词库,在源码中,我使用了stopwords.txt中停用词。可以通过以下代码来读取停用词。

# 读取停用词库  
#如果没有词表,也可以基于词频统计,词频越高的成为停用词的概率就越大  
stopwords=pd.read_csv("stopwords.txt",index_col=False,sep="\t",quoting=3,names=['stopword'], encoding='utf-8')  
stopwords.head(20)  

实验步骤

1.读取数据源

# 给出属性,这里使用的是基于内容来进行分类(加上主题分类会更简单些,这里为了增加难点使用内容分类)  
df_news = pd.read_table('./data/data.txt',names=['category','theme','URL','content'],encoding='utf-8')  
df_news = df_news.dropna()  
#查看前5条新闻  
df_news.head()  
# df_news.tail()  

输出结果如上图所示

标签解释:

Category:当前新闻所属的类别,一会我们要进行分别任务,这就是标签了。

Theme:新闻的主题,这个咱们先暂时不用,大家在练习的时候也可以把它当作特征。

URL:爬取的界面的链接,方便检验爬取数据是不是完整的,这个咱们暂时也不需要。

Content:新闻的内容,这些就是一篇文章了,里面的内容还是很丰富的。

2.中文分词

#用于保存结果  
content_S = []  
for line in content:  
#     line为每一篇文章  
    current_segment = jieba.lcut(line) #对每一篇文章进行分词  
    if len(current_segment) > 1 and current_segment != '\r\n': #换行符  
#         该篇文章词的个数>1,而且不是简单的换行才保留下来  
        content_S.append(current_segment) #保存分词的结果  

用pandas展示分词结果

df_content=pd.DataFrame({'content_S':content_S}) #专门展示分词后的结果  
df_content.head()  

前五条新闻分词结果

查看第1000条新闻分词结果

df_content.iloc[1000]  

3.去停用词

def drop_stopwords(contents,stopwords):  
    contents_clean = []  
    all_words = []  
    for line in contents:  
        line_clean = []  
        for word in line:  
            if word in stopwords:  
#                 如果这个词不在停用词当中,就保留这个词  
                continue  
            line_clean.append(word)  
            all_words.append(str(word))  
        contents_clean.append(line_clean)  
    return contents_clean,all_words  
      
contents = df_content.content_S.values.tolist()      
stopwords = stopwords.stopword.values.tolist()  
contents_clean,all_words = drop_stopwords(contents,stopwords)  
  
#df_content.content_S.isin(stopwords.stopword)  
#df_content=df_content[~df_content.content_S.isin(stopwords.stopword)]  
#df_content.head()  

用pandas过滤掉停用词的结果

df_content=pd.DataFrame({'contents_clean':contents_clean})  
df_content.head()  

前五天新闻过滤掉停用词的结果

4.构建文本特征

一些要考虑的问题

这里我们需要到一些问题:

问题1:特征提取要考虑到词与词之间的顺序,而不是只考虑了这个词在这句话当中出现的次数。

问题2:一般语料库的词是非常多的,比如说语料库向量长度4000;那对于每句话,也要有对应的4000维向量,但是里面很多词是没有出现的,所以4000维的向量里面很多值为0,也就是每句话对应的词向量是一个“稀疏向量”。

问题3:同义词也被认为了不同的词,但很多时候同义词在句子的意思是相同的。

用一个例子理解

from sklearn.feature_extraction.text import CountVectorizer  
# 拿这四个词作为例子去理解这个计算思路  
texts=["dog cat fish","dog cat cat","fish bird", 'bird'] #为了简单期间,这里4句话就当做4篇文章  
cv = CountVectorizer() #词频统计  
cv_fit=cv.fit_transform(texts) #转换数据  
  
# 获得语料库  
print(cv. get_feature_names_out())  
# 得到每句话在每个词中出现的次数  
print(cv_fit.toarray())  
print(cv_fit.toarray().sum(axis=0))  

取词频大的词

from sklearn.feature_extraction.text import CountVectorizer  
  
vec = CountVectorizer(analyzer='word',lowercase = False)  
feature = vec.fit_transform(words)  
feature.shape  
# 结果:(3750, 85093)解释:3750为文章数;85093为语料库;每篇文章对应85093维的向量 

只取词频前4000的

from sklearn.feature_extraction.text import CountVectorizer  
  
#只统计频率前4000的词,要不每篇文章对应的向量太大了  
#这个操作之前需要先过滤掉停用词,要不然这里得到的都是没有意义的停用词了  
vec = CountVectorizer(analyzer='word', max_features=4000,  lowercase = False)  
feature = vec.fit_transform(words)  
feature.shape  
# 结果:(3750, 4000)解释:3750为文章数,4000为给文章词频最多的数  

5.通过贝叶斯预测结果

在贝叶斯模型中,选择了MultinomialNB,这里它额外做了一些平滑处理主要目的就在我们求解先验概率和条件概率的时候避免其值为0。

from sklearn.naive_bayes import MultinomialNB #贝叶斯模型  
classifier = MultinomialNB()   
# y_train为标签  
classifier.fit(feature, y_train)  
获得准确率
# 查看测试集的准确率  
classifier.score(vec.transform(test_words), y_test)  
结果准确率为:0.804

参考文献

  1. 李航。 (2019). 统计学习方法[M]. 北京: 清华大学出版社。
  2. 凌能祥,&李声闻。 (2014). 数理统计[M]. 北京: 中国科学技术大学出版社。

附录(代码)

本文用到的所有可执行代码和数据源在下面链接给出

Machine_learning: 机器学习用到的方法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/291149.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何把照片多余的地方擦除?一键消除图片上的瑕疵,简单又轻松,太方便了

在数字繁荣的时代,图片处理已然成为我们生活乐章中不可或缺的一部分,就如画师手中的画笔般灵动,摄影师镜头下的世界般多彩。然而,在捕捉或获取这些美丽的图片时,可能会不小心闯入一些不速之客,给画面带来瑕…

Linux Perf 介绍

文章目录 前言 二、安装Perf三、二级命令3.1 perf list3.2 perf record/report3.3 perf stat3.4 perf top 四、使用火焰图进行性能分析4.1 下载火焰图可视化生成器4.2 使用perf采集数据4.3 生成火焰图参考资料 前言 perf是一款Linux性能分析工具,内置在Linux内核的…

爬虫工具(tkinter+scrapy+pyinstaller)

需求介绍输入:关键字文件,每一行数据为一爬取单元。若一行存在多个and关系的关键字 ,则用|隔开处理:爬取访问6个网站的推送,获取推送内容的标题,发布时间,来源,正文第一段&#xff0…

自动化测试框架总结

1. 单元测试框架 几乎所有的主流语言,都会有其对应的单元测试框架,下面简单介绍一下python,java,C#三种语言的常见单元测试框架 1.1 Python python常见单元测试框架包括unittest, pytest 1.1.1 unittest unittest单元测试框架不仅可以适用于单元测试&#xff0c…

Windows重装升级Win11系统后 恢复Mysql数据

背景 因为之前电脑硬盘出现问题,换了盘重装了系统,项目的数据库全部没了,还好之前的Mysql是安装在的D盘里,还有留存文件 解决办法 1.设置环境变量 我的路径是 D:\SoftWare\Application\mysql-5.7.35-winx64 此电脑右键属性 …

auto关键字的含义以及常见用法,C++11中的关键字

一、auto关键字的含义: auto:这是 C11 引入的关键字,用于自动推断变量的类型; 二、auto关键字的常见用法: auto 关键字在 C 中用于自动推断变量的类型,它可以让编译器根据初始化表达式的类型推导出变量的…

Python 介绍和环境准备

一、概述 Python 是一个高层次的结合了解释性、编译性、互动性和面向对象的解释性编程语言。 Python 是一种解释型语言: 这意味着开发过程中没有了编译这个环节。类似于PHP和Perl语言。 Python 是交互式语言: 这意味着,您可以在一个 Python…

和鲸解放军总医院连续生理数据分析引擎入选爱分析数据智能最佳实践案例

近日,“2023 爱分析 数据智能最佳实践案例”评选活动落下帷幕,和鲸科技基于旗下数据科学协同平台 ModelWhale 携手解放军总医院联合打造的《解放军总医院连续生理数据分析引擎》成功入选,有力证明了该案例于数据资产归集、数据架构升级、数据…

UE5.1保存资源报错

UE5.1保存资源报错 错误: The asset /Game/XXX(XXX.uasset) failed to save. Cancel: Stop saving all assets and return to the editor. Retry: Attempt to save the asset again. Continue: Skip saving this asset only. 解决: 1. 可能是进程中有多开的项目&…

iOS 组件开发教程——手把手轻松实现灵动岛

1、先在项目里创建一个Widget Target 2、一定要勾选 Include live Activity,然后输入名称,点击完成既可。 3、在 Info.plist 文件中声明开启,打开 Info.plist 文件添加 NSSupportsLiveActivities,并将其布尔值设置为 YES。 4、我…

Spark内核解析-脚本解析2(六)

2、脚本解析 在看源码之前,我们一般会看相关脚本了解其初始化信息以及Bootstrap类,Spark也不例外,而Spark中相关的脚本如下: %SPARK_HOME%/sbin/start-master.sh %SPARK_HOME%/sbin/start-slaves.sh %SPARK_HOME%/sbin/start-all…

freeRTOS——事件标志组知识总结及实战

1事件标志组概念 事件标志组:是一组事件标志位的集合, 可以简单的理解事件标志组,就是一个整数。 其特点: 1)它的每一个位表示一个事件(高8位不算) 2)每一位事件的含义,…

Spark内核解析-节点启动4(六)

1、Master节点启动 Master作为Endpoint的具体实例,下面我们介绍一下Master启动以及OnStart指令后的相关工作 1.1脚本概览 下面是一个举例: /opt/jdk1.7.0_79/bin/java -cp /opt/spark-2.1.0/conf/:/opt/spark-2.1.0/jars/*:/opt/hadoop-2.6.4/etc/ha…

UI5与后端的文件交互(四)

文章目录 前言一、后端开发1. 新建管理模板表格2. 新建Function,动态创建文档 二、修改UI5项目1.Table里添加下载证明列2. 实现onClickDown事件 三、测试四、附 前言 这系列文章详细记录在Fiori应用中如何在前端和后端之间使用文件进行交互。 这篇的主要内容有&…

2008年全国生态自然地域划分数据,shp格式,来源于国家生态环境部发布的《全国生态功能区》2008年版

数据名称: 全国生态自然地域划分数据 数据格式: Shp 数据时间: 2008年 数据几何类型: 面 数据坐标系: WGS84 数据来源:国家生态环境部发布的《全国生态功能区》2008年版 数据字段: 序号字段名称字段说明1bh编号2stq_1生态区_大类3stq_2生态区…

Spring Boot 完善订单【五】集成接入支付宝沙箱支付

1.1.什么是沙箱支付 支付宝沙箱支付(Alipay Sandbox Payment)是支付宝提供的一个模拟支付环境,用于开发和测试支付宝支付功能的开发者工具。在真实的支付宝环境中进行支付开发和测试可能涉及真实资金和真实用户账户,而沙箱环境则提…

网络对讲终端 网络音频终端 网络广播终端SV-7011V使用说明

高速路sip广播对讲求助 隧道sip对讲调度SIP-7011 网络广播终端SV-7011 壁挂式对讲终端网络监听终端SIP广播终端 sip语音对讲终端SIP-7011 SV-7011网络对讲终端网络对讲、网络厂播、监听 SV-7101网络解码终端提供一路线路输出接功放或有源音箱。 SV-7102网络解码广播终端两…

OpenGL如何基于glfw库 进行 点线面 已解决

GLFW是现在较流行、使用广泛的OpenGL的界面库,而glut库已经比较老了。GLEW是和管理OpenGL函数指针有关的库,因为OpenGL只是一个标准/规范,具体的实现是由驱动开发商针对特定显卡实现的。由于OpenGL驱动版本众多,它大多数函数的位置…

一加 Buds 3正式发布:普及旗舰音质 一加用户首选

1月4日,一加新品发布会正式推出旗下新款耳机一加 Buds 3。延续一加经典美学,秉承音质完美主义追求,一加 Buds 3全面普及一加旗舰耳机体验,其搭载旗舰同款“超清晰同轴双单元”,配备49dB 4000Hz超宽频主动降噪&#xff…

企语iFair 协同管理系统 任意文件读取漏洞复现(CVE-2023-47473)

0x01 产品简介 企语iFair协同管理系统是一款专业的协同办公软件,该管理系统兼容性强,适合多种企业类型。该软件永久免费,绿色安全,无需收取费用即可使用所有功能。企语iFair协同管理系统同时兼容了Linux、Windows两种操作系统 0x02 漏洞概述 企语iFair协同管理系统getup…