Spark---RDD算子(单值类型Value)

文章目录

  • 1.RDD算子介绍
  • 2.转换算子
      • 2.1 Value类型
          • 2.1.1 map
          • 2.1.2 mapPartitions
          • 2.1.3 mapPartitionsWithIndex
          • 2.1.4 flatMap
          • 2.1.5 glom
          • 2.1.6 groupBy
          • 2.1.7 filter
          • 2.1.8 sample
          • 2.1.9 distinct
          • 2.1.10 coalesce
          • 2.1.11 repartition
          • 2.1.12 sortBy

1.RDD算子介绍

RDD算子是用于对RDD进行转换(Transformation)或行动(Action)操作的方法或函数。通俗来讲,RDD算子就是RDD中的函数或者方法,根据其功能,RDD算子可以分为两大类:
转换算子(Transformation): 转换算子用于从一个RDD生成一个新的RDD,但是原始RDD保持不变。常见的转换算子包括map、filter、flatMap等,它们通过对RDD的每个元素执行相应的操作来生成新的RDD。
行动算子(Action): 行动算子触发对RDD的实际计算,并返回计算结果或将结果写入外部存储系统。与转换算子不同,行动算子会导致Spark作业的执行。如collect方法。

2.转换算子

RDD 根据数据处理方式的不同将算子整体上分为:
Value 类型:对一个RDD进行操作或行动,生成一个新的RDD。
双 Value 类型:对两个RDD进行操作或行动,生成一个新的RDD。
Key-Value类型:对键值对进行操作,如reduceByKey((x, y),按照key对value进行合并。

2.1 Value类型

2.1.1 map

将处理的数据逐条进行映射转换,这里的转换可以是类型的转换,也可以是值的转换。

函数定义
def map[U: ClassTag](f: T => U): RDD[U]

代码实现:

    //建立与Spark框架的连接
    val rdd = new SparkConf().setMaster("local[*]").setAppName("RDD") //配置文件
    val sparkRdd = new SparkContext(rdd) //读取配置文件

    val mapRdd: RDD[Int] = sparkRdd.makeRDD(List(1, 2, 3, 4))
    //对mapRdd进行转换
    val mapRdd1 = mapRdd.map(num => num * 2)
    //对mapRdd1进行转换
    val mapRdd2 = mapRdd1.map(num => num + "->")

    mapRdd2.collect().foreach(print)

    sparkRdd.stop();//关闭连接

在这里插入图片描述

2.1.2 mapPartitions

将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是指可以进行任意的处理,哪怕是过滤数据。

函数定义
def mapPartitions[U: ClassTag](
f: Iterator[T] => Iterator[U],
preservesPartitioning: Boolean = false): RDD[U]

Map 算子是分区内一个数据一个数据的执行,类似于串行操作。而 mapPartitions 算子是以分区为单位进行批处理操作。

mapPartitions在处理数据的时候因为是批处理,相对于map来说处理效率较高,但是如果数据量较大的情况下使用mapPartitions可能会造成内存溢出,因为mapPartitions会将分区内的数据全部加载到内存中。此时更推荐使用map。

2.1.3 mapPartitionsWithIndex

将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是指可以进行任意的处理,哪怕是过滤数据,在处理时同时可以获取当前分区索引。

函数定义
def mapPartitionsWithIndex[U: ClassTag](
f: (Int, Iterator[T]) => Iterator[U],
preservesPartitioning: Boolean = false): RDD[U]

实现只保留第二个分区的数据

    val mapRdd: RDD[Int] = sparkRdd.makeRDD(List(1, 2, 3, 4),2)
    val newRdd: RDD[Int] = mapRdd.mapPartitionsWithIndex((index, iterator) => {
      if (index == 1) iterator
      else Nil.iterator
    })
    newRdd.collect().foreach(println)
2.1.4 flatMap

将处理的数据进行扁平化后再进行映射处理,所以算子也称之为扁平映射

       //建立与Spark框架的连接
    val rdd = new SparkConf().setMaster("local[*]").setAppName("RDD") //配置文件
    val sparkRdd = new SparkContext(rdd) //读取配置文件

    val rdd1: RDD[List[Int]] = sparkRdd.makeRDD(List(List(1, 2), List(3, 4)))
    val rdd2: RDD[String] = sparkRdd.makeRDD(List("Hello Java", "Hello Scala"), 2)

    val frdd1: RDD[Int] =rdd1.flatMap(list=>{list})
    val frdd2: RDD[String] =rdd2.flatMap(str=>str.split(" "))

    frdd1.collect().foreach(println)
    frdd2.collect().foreach(println)
    sparkRdd.stop();//关闭连接

在这里插入图片描述

2.1.5 glom

将同一个分区的数据直接转换为相同类型的内存数组进行处理,分区不变,glom函数的作用就是将一组数据转换为数组。

函数定义
def glom(): RDD[Array[T]]

    /建立与Spark框架的连接
    val rdd = new SparkConf().setMaster("local[*]").setAppName("RDD") //配置文件
    val sparkRdd = new SparkContext(rdd) //读取配置文件

    val rdd1: RDD[Any] = sparkRdd.makeRDD(List(1,2,3,4),2)
    val value: RDD[Array[Any]] = rdd1.glom()
    value.collect().foreach(data=> println(data.mkString(",")))
    sparkRdd.stop();//关闭连接

在这里插入图片描述

2.1.6 groupBy

将数据根据指定的规则进行分组, 分区默认不变,但是数据会被打乱重新组合,我们将这样的操作称之为 shuffle。 极限情况下,数据可能被分在同一个分区中

函数定义
def groupBy[K](f: T => K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])]

	    //按照奇偶分组
    val rdd1: RDD[Int] = sparkRdd.makeRDD(List(1,2,3,4),2)
    val value = rdd1.groupBy(num => num % 2)
    value.collect().foreach(println)
    
    //将 List("Hello", "hive", "hbase", "Hadoop")根据单词首写字母进行分组。
    val rdd2: RDD[String] = sparkRdd.makeRDD(List("Hello", "hive", "hbase", "Hadoop"))
    val value1: RDD[(Char, Iterable[String])] = rdd2.groupBy(str => {
      str.charAt(0)
    })
    value1.collect().foreach(println)

在这里插入图片描述

2.1.7 filter

将数据根据指定的规则进行筛选过滤,符合规则的数据保留,不符合规则的数据丢弃。当数据进行筛选过滤后,分区不变,但是分区内的数据可能不均衡,生产环境下,可能会出现数据倾斜。

函数定义
def filter(f: T => Boolean): RDD[T]

	//获取偶数
    val dataRDD = sparkRdd.makeRDD(List(
      1, 2, 3, 4
    ), 1)
    val value1 = dataRDD.filter(_ % 2 == 0)
2.1.8 sample

函数定义
def sample(
withReplacement: Boolean,
fraction: Double,
seed: Long = Utils.random.nextLong): RDD[T]

根据指定的规则从数据集中抽取数据

参数具体意义:
1.抽取数据不放回
 withReplacement: Boolean, 该参数表示抽取不放回,此时采用伯努利算法(false)
 fraction: Double,该参数表示抽取的几率,范围在[0,1]之间,0:全不取;1:全取;
 seed: Long = Utils.random.nextLong): RDD[T] 该参数表示随机数种子

2.抽取数据放回
 withReplacement: Boolean, 该参数表示抽取放回,此时采用泊松算法(true)
 fraction: Double,该参数表示重复数据的几率,范围大于等于 0.表示每一个元素被期望抽取到的次数
 seed: Long = Utils.random.nextLong): RDD[T] 该参数表示随机数种子
2.1.9 distinct

将数据集中重复的数据去重

def distinct()(implicit ord: Ordering[T] = null): RDD[T]
def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]

    val dataRDD = sparkRdd.makeRDD(List(
      1, 2, 3, 4, 1, 2
    ), 6)
    val value = dataRDD.distinct()

在这里插入图片描述

2.1.10 coalesce

根据数据量缩减分区,用于大数据集过滤后,提高小数据集的执行效率当 spark 程序中,存在过多的小任务的时候,可以通过 coalesce 方法,收缩合并分区,减少分区的个数,减小任务调度成本

def coalesce(numPartitions: Int, shuffle: Boolean = false,
partitionCoalescer: Option[PartitionCoalescer] = Option.empty)
(implicit ord: Ordering[T] = null)
: RDD[T]

    //初始Rdd采用6个分区
    val dataRDD = sparkRdd.makeRDD(List(
      1, 2, 3, 4, 1, 2
    ), 6)
    //将分区数量缩减至2个
    val value = dataRDD.coalesce(2)

在coalesce中默认不开启shuffle,在进行分区缩减的时候,数据不会被打散。
在这里插入图片描述

2.1.11 repartition

def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]

repartition内部其实执行的是 coalesce 操作,参数 shuffle 的默认值为 true。无论是将分区数多的RDD 转换为分区数少的 RDD,还是将分区数少的 RDD 转换为分区数多的 RDD,repartition操作都可以完成,因为无论如何都会经 shuffle 过程。
在这里插入图片描述

	//将分区数量从2个提升至4个
    val dataRDD = sparkRdd.makeRDD(List(
      1, 2, 3, 4, 1, 2
    ), 2)
    val dataRDD1 = dataRDD.repartition(4)
2.1.12 sortBy

该操作用于排序数据。在排序之前,可以将数据通过 f 函数进行处理,之后按照 f 函数处理的结果进行排序,默认为升序排列。排序后新产生的 RDD 的分区数与原 RDD 的分区数一致。中间存在 shuffle 的过程

def sortBy[K](
f: (T) => K, 该参数表述用于处理的函数
ascending: Boolean = true, 该参数表示是否升序排序
numPartitions: Int = this.partitions.length) 该参数表示设置分区数量
(implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T]

    val dataRDD = sparkRdd.makeRDD(List(
      1, 2, 3, 4, 1, 2
    ), 2)
    //按照初始数据降序排列
    val dataRDD1 = dataRDD.sortBy(num => num, false, 4)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/289778.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构】循环队列(数组实现)

目录 一、循环队列定义 怎么使一个数组在逻辑上呈“环状”呢? 二、循环队列与顺序队列的差异 1、存储方式: 2、操作方式: 3、空间利用率: 4、循环队列判断队空的方式: 5、循环队列判断队满的方式 完整测试代码及注释: 总…

Vue 中的 ref 与 reactive:让你的应用更具响应性(上)

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

用HTML的原生语法实现两个div子元素在同一行中排列

代码如下&#xff1a; <div id"level1" style"display: flex;"><div id"level2-1" style"display: inline-block; padding: 10px; border: 1px solid #ccc; margin: 5px;">这是第一个元素。</div><div id"…

计算机系统基础

C 语言相关内容省略&#xff0c;复习自用&#xff0c;仅供参考~ 概述 冯诺伊曼结构 存储程序工作方式&#xff1a;将事先编好的程序和原始数据送入主存后才能执行程序&#xff0c;程序被启动执行后&#xff0c;计算机能在不需要操作人员干预下自动完成逐条指令取出和执行的任…

解析为什么Go语言要使用[]rune而不是string来表示中文字符

众所周知&#xff0c;Go语言中有以下这些数据类型。但rune32这个go语言特有的数据类型&#xff0c;比较有意思却经常遭到忽视。所以今天探索学习一下这个数据类型的功能、用法。 Go基本数据类型 布尔&#xff1a;bool 字符串&#xff1a;string 整数&#xff1a; int int8 …

NNDL 作业13 优化算法3D可视化 [HBU]

老师作业原博客:【23-24 秋学期】NNDL 作业13 优化算法3D可视化-CSDN博客 NNDL 作业13 优化算法3D可视化-CSDN博客 编程实现优化算法&#xff0c;并3D可视化 1. 函数3D可视化 分别画出 和 的3D图 NNDL实验 优化算法3D轨迹 鱼书例题3D版_优化算法3d展示-CSDN博客 代码&#…

JSON网络令牌JWT

1.什么是身份验证 日常生活中的身份验证的场景: 比如进入公司的大楼时&#xff0c;需要携带工牌&#xff1b;打卡上班时&#xff0c;需要指纹识别&#xff1b;打开工作电脑时&#xff0c;需要输入密码。 2. 什么是 JSON 网络令牌&#xff1f; JSON Web Token (JWT) 是一个开…

智能编程助手!华为云CodeArts Snap免费公测:基于盘古研发大模型

近日&#xff0c;华为云CodeArts Snap正式开启公测。 这是一款基于华为云研发大模型的智能化编程助手&#xff0c;旨在为开发者提供高效且智能的编程体验&#xff0c;提升研发人员的单兵作战能力。 该服务公测期间免费&#xff0c;不向用户收取任何费用&#xff0c;商用后&am…

【论文阅读|冷冻电镜】DISCA: High-throughput cryo-ET structural pattern mining

论文题目 High-throughput cryo-ET structural pattern mining by unsupervised deep iterative subtomogram clustering 摘要 现有的结构排序算法的吞吐量低&#xff0c;或者由于依赖于可用模板和手动标签而固有地受到限制。本文提出了一种高吞吐量的、无需模板和标签的深度…

【C++入门到精通】function包装器 | bind() 函数 C++11 [ C++入门 ]

阅读导航 引言一、function包装器1. 概念2. 基本使用3. 逆波兰表达式求值&#xff08;1&#xff09;普通写法&#xff08;2&#xff09;使用包装器以后的写法 二、bind() 函数温馨提示 引言 很高兴再次与大家分享关于 C11 的一些知识。在上一篇文章中&#xff0c;我们讲解了 c…

Vue前端文字效果:如何让一段文本像是手动一个一个字打出来的

效果展示 自己做的AI聊天机器人界面&#xff0c;我觉得比微信还好看 由于这个前端略微复杂&#xff0c;下文用最简单的例子来展示&#xff1a; 分析需求 对于AI聊天工具的前端&#xff0c;如果AI生成的文本像是一个一个字打出来的&#xff0c;就会让AI看起来更像真的人&…

打造炫酷粒子效果的前端利器tsParticles

前端潮流速递 &#xff1a;打造炫酷粒子效果的前端利器tsParticles 在现代前端开发中&#xff0c;动画和视觉效果是吸引用户的关键元素之一。而实现炫酷而引人入胜的粒子效果&#xff0c;常常需要耗费大量的时间和精力。然而&#xff0c;有了 tsParticles&#xff0c;这一切变…

MySQL 8.0 开关 Redo Logging

一 前言 前几天有客户测试使用云数据库的时候提出 要禁止mydumper 关闭redo log的操作 (说白了就是导入数据时保持MySQL 实例的redo logging功能)&#xff0c; 这才想起 在 MySQL 8.0.21 版本中&#xff0c;开启了一个新特性 “Redo Logging 动态开关”。 在新实例导数据的场…

搭建宠物寄养小程序流程

近日&#xff0c;一地宠物寄养需求旺盛&#xff0c;元旦满房&#xff0c;春节几近饱和&#xff0c;一窝难求。随着市场需求的增长&#xff0c;对于很多宠物行业的商家&#xff0c;可以考虑开展宠物寄养服务&#xff0c;尤其是节假日的宠物寄养需求会更高。因此&#xff0c;商家…

FastApi-快速入门1

FastAPI 是一个用于构建 API 的现代、快速&#xff08;高性能&#xff09;的 web 框架&#xff0c;使用 Python 3.8 并基于标准的 Python 类型提示。 关键特性: 快速&#xff1a;可与 NodeJS 和 Go 并肩的极高性能&#xff08;归功于 Starlette 和 Pydantic&#xff09;。最快…

算法通关村番外篇-数组实现队列

大家好我是苏麟 , 今天来用数组实现一下队列 . 数组实现队列 顺序存储结构存储的队列称为顺序队列&#xff0c;内部使用一个一维数组存储&#xff0c;用一个队头指针 front 指向队列头部节点(即使用int类型front来表示队头元素的下标)&#xff0c;用一个队尾指针rear(有的地方…

3dmax灯光缓存参数应该怎么设置?

细分&#xff1a;用来决定灯光缓存的样本数量&#xff0c;样本数量以此数值的平方来计算。数值越高&#xff0c;效果越好&#xff0c;速度越慢。 一般出图建议1000到1800之间已经足够了 采样大小&#xff1a;用来控制灯光缓存的样本尺寸大小&#xff0c;较小的数值意味着较小的…

Vue 模板编译原理解析

Vue 模板编译原理解析 模板编译整体流程 首先我们看一下什么是编译&#xff1f; 所谓编译&#xff08;Compile&#xff09;&#xff0c;指的是将语言 A 翻译成语言 B&#xff0c;语言 A 就被称之为源码&#xff08;source code&#xff09;&#xff0c;语言 B 就被称之为目标…

清风数学建模笔记-主成分分析

内容&#xff1a;主成分分析 介绍&#xff1a; 主成分分析是一种降维算法&#xff0c;它通过旋转和变换将多个指标转化为少数几个主成分&#xff0c;这些主成分是原变量的线性组合&#xff0c;且互不相关&#xff0c;其能反映出原始数据的大部分信息。 例如解决多重共线性问题…

Vue+ElementUI笔记(1)

一、表格 1.上移、下移和移除功能 需求&#xff1a;有时我们会面对类似这样的表格 图中的上移&#xff0c;下移功能需求明显要求我们改变两行数据的顺序。在实际开发中这种功能一般由后台来做&#xff0c;因为列表数据一般从后台获取刷新。即是我们点击”上移“&#xff0c;向…