【Elacticsearch】 原理/数据结构/面试经典问题整理

对Elacticsearch 原理/数据结构/面试经典问题整理的文章;

映射 | Elasticsearch: 权威指南 | Elastic

Elacticsearch介绍

         Elasticsearch,这里简称ES。ES是一个开源的高可用高扩展的分布式全文搜索与分析引擎,可以提供PB级近实时的数据存储和检索能力,底层基于Lucene作为其核心处理组件并在此之上进行封装提供了多语言API以及Resutful API来隐藏Lucene的复杂性,是目前最流行的企业级搜索引擎;是一个分布式、Restful的搜索及分析引擎,设计用于分布式计算;能够达到实时搜索,稳定,可靠,快速。和Apache Solr一样,它也是基于Lucence的索引服务器,而ElasticSearch对比Solr的优点在于:

  • 轻量级:安装启动方便,下载文件之后一条命令就可以启动。
  • Schema free:可以向服务器提交任意结构的JSON对象,Solr中使用schema.xml指定了索引结构。
  • 多索引文件支持:使用不同的index参数就能创建另一个索引文件,Solr中需要另行配置。
  • 分布式:Solr Cloud的配置比较复杂。

 整体架构:

关键概念:

一、索引(Index)
ES将数据存储于一个或多个索引中,索引是具有类似特性的文档的集合。类比传统的关系型数据库领域来说,索引相当于SQL中的一个数据库,或者一个数据存储方案(schema)。索引由其名称(必须为全小写字符)进行标识,并通过引用此名称完成文档的创建、搜索、更新及删除操作。一个ES集群中可以按需创建任意数目的索引。

二、类型(Type)
类型是索引内部的逻辑分区(category/partition),然而其意义完全取决于用户需求。因此,一个索引内部可定义一个或多个类型(type)。一般来说,类型就是为那些拥有相同的域的文档做的预定义。例如,在索引中,可以定义一个用于存储用户数据的类型,一个存储日志数据的类型,以及一个存储评论数据的类型。类比传统的关系型数据库领域来说,类型相当于“表”。

三、文档(Document)
文档是Lucene索引和搜索的原子单位,它是包含了一个或多个域的容器,基于JSON格式进行表示。文档由一个或多个域组成,每个域拥有一个名字及一个或多个值,有多个值的域通常称为“多值域”。每个文档可以存储不同的域集,但同一类型下的文档至应该有某种程度上的相似之处。

四、分片(Shard)和副本(Replica)
ES的“分片(shard)”机制可将一个索引内部的数据分布地存储于多个节点,它通过将一个索引切分为多个底层物理的Lucene索引完成索引数据的分割存储功能,这每一个物理的Lucene索引称为一个分片(shard)。每个分片其内部都是一个全功能且独立的索引,因此可由集群中的任何主机存储。创建索引时,用户可指定其分片的数量,默认数量为5个。

Shard有两种类型:primary和replica,即主shard及副本shard。Primary shard用于文档存储,每个新的索引会自动创建5个Primary shard,当然此数量可在索引创建之前通过配置自行定义,不过,一旦创建完成,其Primary shard的数量将不可更改。Replica shard是Primary Shard的副本,用于冗余数据及提高搜索性能。每个Primary shard默认配置了一个Replica shard,但也可以配置多个,且其数量可动态更改。ES会根据需要自动增加或减少这些Replica shard的数量。

ES集群可由多个节点组成,各Shard分布式地存储于这些节点上。
 

分布式架构
  多台独立的机器上分别存在es进程,每个es进程中存在多个shard。shard分为primary和replica,replica是primary的从备份,每个primary的replica一般都分布在其他机器上,保证可用性。

应用层

  • Restful API :提供丰富的操作接口,包括CRUD操作,索引管理,集群状态等。比如:'http:localhost:9200/_cat/indices' 查看创建的索引。
  • Java API:TransportClient(7.0之后废弃,8.0移除),RestHighLevelClient(7.0之后常用)。

协议层

  • Thrift:是一种接口描述语言和二进制通讯协议,它被用来定义和创建跨语言的服务。它被当作一个远程过程调用(RPC)框架来使用。
  • Tcp:ElasticSearch由Transport负责通信,而Transport是基于TCP通信采用Netty实现。
  • http:Elasticsearch对外提供的API是以HTTP协议的方式,通过JSON格式以REST约定对外提供。它为我们提供了RestFul API和Java API RestHighLevelClient来提供开发使用。
  • JMX:JMX(Java Management Extensions,即Java管理扩展)是一个为应用程序、设备、系统等植入管理功能的代理和服务框架。JMX可以跨越一系列异构操作系统平台、系统体系结构和网络传输协议,灵活的开发无缝集成的系统、网络和服务管理应用。(日常ES中使用比较少,作为了解部分即可)

脚本/发现

  • Discovery:服务发现模块,包括master选举、服务探测、服务发现等,ES默认实现为ZenDiscovery。
  • Script:ES提供一些脚步开发来实现复杂业务场景功能开发。
  • Plugins:ES提供抽象插件机制,用户可以实现自己的插件开发来满足不同的业务需求。

数据处理

  • Index Module:索引模块是按索引创建的模块,控制index相关的所有方面。
  • Search Module:搜索模块,负责调用底层lucene的搜索服务。
  • River:Elastisearch中提供了River模块来从其他数据源中获取数据,该项功能以插件的形式存在,目前已有的River插件包括:RabbitMQ、ActiveMQ、CSV、FileSystem、JDBC、、Kafka等,已经覆盖了大部分的数据源,特别是针对关系型数据库提供了统一的jdbc-river来进行数据操作。

核心架构

Lucene是一个功能最强大的搜索库, ES底层的Engine模块通过封装lucene来实现索引写入和查询操作。

数据存储

Gateway 是 Elasticsearch 索引的持久化存储方式,ES 默认是先把索引存放到内存中,提高搜索的时效性,再持久化到硬盘里,保障数据的持久可靠。

如果创建一个索引product_idx,那么该索引的数据就会保存在多个shard中。es 集群多个节点,会自动选举一个节点为 master 节点,这个 master 节点其实就是干一些管理的工作的,比如维护索引元数据、负责切换 primary shard 和 replica shard 身份等。要是 master 节点宕机了,那么会重新选举一个节点为 master 节点。如果某个非 master 节点宕机了。那么此节点上的 primary shard 不就没了。那好,master 会让 primary shard 对应的 replica shard(在其他机器上)切换为 primary shard。如果宕机的机器修复了,修复后的节点也不再是 primary shard,而是 replica shard。

      1、index包含多个shard。

        2、每个shard都是一个最小工作单元,承载部分数据,lucene实例,完整的建立索引和处理请求的能力。增减节点时,shard会自动在nodes中负载均衡。

        3 、primary shard和replica shard,每个document肯定只存在于某一个primary shard以及其对应的。replica shard中,不可能存在于多个primary shard。

        4、replica shard是primary shard的副本,负责容错,以及承担读请求负载。副本中的数据保证强一致或最终一致。

        5、primary shard的数量在创建索引的时候就固定了,因为索引时,需要按照primary shard的数量为文档做路由(默认使用文档的_id属性取哈希值做路由,也可以通过routing指定使用其他文档字段取哈希值做路由)。replica shard的数量可以随时修改。

        6、primary shard的默认数量是5,replica默认是1,默认有10个shard,5个primary shard,5个replica shard。

        7、primary shard不能和自己的replica shard放在同一个节点上(否则节点宕机,primary shard和副本都丢失,起不到容错的作用),但是可以和其他primary shard的replica shard放在同一个节点上;

  • 原理

  • 建立索引原理

  • 查询索引原理

  • 更新索引原理

  • 删除索引原理

  • 选举原理

  • 压缩算法

  • 数据类型

字符串类型:是ES最常用的类型之一。其内部使用了倒排索引算法。目前有两类字符串类型:text、keyword;

  • Keyword 类型:用于索引结构化内容(例如ID、电子邮件地址),默认不分词,应用场景:精准匹配、排序、聚合分析。
  • Text 类型:用于全文检索领域(例如电子邮件内容、日志内容等),默认进行分词,应用场景:全文检索领域。

数值类型:熟悉关系型数据库的应该都不难理解 。其中,独特的是half_float和scaled_float两个类型;

  • long     带符号的64位整数,最小值为-263,最大值为263-1。
  • integer  一个带32位整数,最小值为-231,最大值为231-1。
  • short 
  • byte
  • double
  • float
  • half_float  半精度16位IEEE 754浮点数。
  • scaled_float  支持固定的缩放因子的浮点数。
  • 布尔型: boolean
  • 日期: date
  • 当你索引一个包含新域的文档—​之前未曾出现-- Elasticsearch 会使用 动态映射 ,通过JSON中基本数据类型,尝试猜测域类型;

  • 数据结构

 倒排索引:

普通keyword 数据采用倒排索引,其中根据不同使用场景用到了bitmapskipList 等数据结构;

地理位置等信息采用:BKD树
 

先介绍倒排索引的组成部:倒排索引组成三部分

term dictionary

会根据分词器对文字进行分词(也就是图上所看到的Ada/Allen/Sara..),这些分词汇总起来叫做Term Dictionary;

优化手段

该部分的词会非常非常多,所以es内部对其进行了排序,使用二分查找法来查,故而就不需要遍历整个词集

posting list

通过分词找到对应的记录,这些文档ID保存在PostingList;

优化手段

为节约磁盘空间和快速得出交并集结果 。使用FOR以及RBM编码技术对内容压缩

term index

由于Term Dictionary的词实在太多了,不可能把Term Dictionary所有的词都放在内存中,于是elastic还抽了一层叫做Term Index,这层只存储 部分 词的前缀Term Index会存在内存中(检索会特别快) 具体如下:

     字典里的索引页一样,A开头的有哪些term,分别在哪页,可以理解term index是一颗树。通过term index可以快速地定位到term dictionary的某个offset,然后从这个位置再往后顺序查找。大大减少了磁盘随机读的次数

这里遗留一个问题,如果Term Index树还是很大怎么办?

优化手段

为节省内存 ,该部分在内存中是以FST(https://cs.nyu.edu/~mohri/pub/fla.pdf的形式保存的

  • 1)空间占用小。通过对词典中单词前缀和后缀的重复利用,压缩了存储空间;
  • 2)查询速度快。O(len(str))的查询时间复杂度。

   

其他优化思路:

当对多个字段进行检索时,利用了bitmap按位与进行归并优化(本身也是用bitmap的方式进行了存储

注:在特定场景非bitmap存储时,使用跳表来进行联合查询;

倒排索引特点

  • 在索引时创建
  • 序列化到磁盘
  • 全文搜索非常快
  • 不适合做排序
  • 默认开启

倒排索引适用场景

  • 查询
  • 全文检索

Doc Values 为正排索引;

在 Elasticsearch 中,Doc Values 就是一种列式存储结构,默认情况下每个字段的 Doc Values 都是激活的(除了 text 类型),Doc Values 是在索引时创建的,当字段索引时,Elasticsearch 为了能够快速检索,会把字段的值加入倒排索引中,同时它也会存储该字段的 Doc Values。

Doc values 通过转置两者间的关系来解决适用倒排索引聚合效率低、难以扩展的问题。

倒排索引词项映射到包含它们的文档doc values 将文档映射到它们包含的词项

Doc Values 特点

  • 在索引时创建
  • 序列化到磁盘
  • 适合排序操作
  • 将单个字段的所有值一起存储在单个数据列中
  • 默认情况下,除text之外的所有字段类型均启用 Doc Values。

 Doc Values 适用场景

Elasticsearch 中的 Doc Values 常被应用到以下场景:

  • 对一个字段进行排序
  • 对一个字段进行聚合
  • 某些过滤,比如地理位置过滤
  • 某些与字段相关的脚本计算

注意:

因为文档值被序列化到磁盘,我们可以依靠操作系统的帮助来快速访问。
当 工作集(working set) 远小于节点的可用内存,系统会自动将所有的文档值保存在内存中,使得其读写十分高速;
当其远大于可用内存,操作系统会自动把 Doc Values 加载到系统的页缓存中,从而避免了 jvm 堆内存溢出异常。 

 fielddata:

如前所述:

  • 搜索需要回答“哪个文档包含此词?”的问题。借助:倒排索引实现。
  • 排序和汇总则需要回答一个不同的问题:“此字段对本文档的价值是什么?” 。借助:正排索引实现。

text 类型字段是不支持 Doc Values正排索引的,text字段使用的是:查询时创建的基于的内存数据结构(query-time in-memory data structure) fielddata。fielddata 将 text 字段用于聚合、排序或在脚本中使用时,将按需构建此数据结构。

实现机理:
它是通过从磁盘读取每个段的整个倒排索引,反转词项↔︎文档关系并将结果存储在JVM堆中的内存中来构建的。

fielddata 特点

  • 适用于文档之类的操作
  • 但仅适用于 text 文本字段类型
  • 在查询时创建
  • 内存中数据结构
  • 没有序列化到磁盘
  • 默认情况下被禁用(构建它们很昂贵,并且在堆中预置)

 fielddata 适用场景

  • 全文统计词频
  • 全文生成词云
  • text类型:聚合、排序、脚本计算

 fielddata 使用注意事项

  • 在启用fielddata 之前,请考虑为什么将文本字段用于聚合、排序或在脚本中使用。
  • 启用 fielddata 通常没有任何意义,因为它非常耗费内存资源。
  • 仅仅是做全文搜索的应用,就不需要启用fielddata。

联合索引

上面说的都是单field索引,如果多个field索引的联合查询,倒排索引如何满足快速查询的要求呢?

  • 利用跳表(Skip list)的数据结构快速做“与”运算,或者
  • 利用上面提到的bitset按位“与”

跳表的数据结构:

将一个有序链表level0,挑出其中几个元素到level1及level2,每个level越往上,选出来的指针元素越少,查找时依次从高level往低查找,比如55,先找到level2的31,再找到level1的47,最后找到55,一共3次查找,查找效率和2叉树的效率相当,但也是用了一定的空间冗余来换取的。

 默认:倒排索引默认所有字段都启用,正排索引 Doc Values 非 text 类型默认启用, source (存储原始文档的 所有字段的 json 结构数据)和 store (存储指定字段的 json 数据) 的启用与否需要结合业务实际。假设:正排索引、倒排索引、_source 、store 都启用了,存储肯定会增加,但不是线性的 4倍。

  • 面试问题收集

  1. 索引优化思路?

    ES索引优化主要从两个方面解决问题: 一、索引数据过程 大家可能会遇到索引数据比较慢的过程。其实明白索引的原理就可以有针对性的进行优化。ES索引的过程到相对Lucene的索引过程多了分布式数据的扩展,而这ES主要是用tranlog进行各节点之间的数据平衡。所以从上我可以通过索引的settings进行第一优化: 这两个参数第一是到tranlog数据达到多少条进行平衡,默认为5000,而这个过程相对而言是比较浪费时间和资源的。所以我们可以将这个值调大一些还是设为-1关闭,进而手动进行tranlog平衡。第二参数是刷新频率,默认为120s是指索引在生命周期内定时刷新,一但有数据进来能refresh像lucene里面commit,我们知道当数据addDoucment后,还不能检索到要commit之后才能行数据的检索,所以可以将其关闭,在最初索引完后手动refresh一之,然后将索引setting里面的index.refresh_interval参数按需求进行修改,从而可以提高索引过程效率。 另外的知道ES索引过程中如果有副本存在,数据也会马上同步到副本中去。我个人建议在索引过程中将副本数设为0,待索引完成后将副本数按需量改回来,这样也可以提高索引效率。 "number_of_replicas": 0;

  2. 如果Term Index树还是很大怎么办?

        

     3.es 为什么搜索快?          

  • 磁盘东西尽量搬内存
  • 各种奇技淫巧算法
  • 苛刻态度使用内存

    4. es 深翻页问题

先查后取的过程支持用 from 和 size 参数分页,但是这是 有限制的 。 要记住需要传递信息给协调节点的每个分片必须先创建一个 from + size 长度的队列,协调节点需要根据 number_of_shards * (from + size) 排序文档,来找到被包含在 size 里的文档。

取决于你的文档的大小,分片的数量和你使用的硬件,给 10,000 到 50,000 的结果文档深分页( 1,000 到 5,000 页)是完全可行的。但是使用足够大的 from 值,排序过程可能会变得非常沉重,使用大量的CPU、内存和带宽。因为这个原因,我们强烈建议你不要使用深分页。

实际上, “深分页” 很少符合人的行为。当2到3页过去以后,人会停止翻页,并且改变搜索标准。会不知疲倦地一页一页的获取网页直到你的服务崩溃的罪魁祸首一般是机器人或者web spider。

再有,使用scroll 查询 可以用来对 Elasticsearch 有效地执行大批量的文档查询,而又不用付出深度分页那种代价。

游标查询允许我们 先做查询初始化,然后再批量地拉取结果。 这有点儿像传统数据库中的 cursor 。

游标查询会取某个时间点的快照数据。 查询初始化之后索引上的任何变化会被它忽略。 它通过保存旧的数据文件来实现这个特性,结果就像保留初始化时的索引 视图 一样。

深度分页的代价根源是结果集全局排序,如果去掉全局排序的特性的话查询结果的成本就会很低。 游标查询用字段 _doc 来排序。 这个指令让 Elasticsearch 仅仅从还有结果的分片返回下一批结果。

启用游标查询可以通过在查询的时候设置参数 scroll 的值为我们期望的游标查询的过期时间。 游标查询的过期时间会在每次做查询的时候刷新,所以这个时间只需要足够处理当前批的结果就可以了,而不是处理查询结果的所有文档的所需时间。 这个过期时间的参数很重要,因为保持这个游标查询窗口需要消耗资源,所以我们期望如果不再需要维护这种资源就该早点儿释放掉。 设置这个超时能够让 Elasticsearch 在稍后空闲的时候自动释放这部分资源。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/28975.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

《离散数学》:集合、关系和函数

〇、前言 这章将会对集合、以及集合之上的关系、以及两个集合之间的映射情况做一个细致的讨论。集合作为数学和其他领域中的基础概念,具有广泛的应用和重要的地位。它为数学建立了基本的体系和推理方法,为各个领域的研究和应用提供了一种统一的描述和分…

基于web漏洞扫描及分析系统设计_kaic

基于web漏洞扫描及分析系统设计 摘 要 随着信息技术的发展和网络应用在我国的普及,针对我国境内信息系统的恶意网络攻击也越来越多,并且随着黑客攻击技术的不断地更新,网络犯罪行为变得越来越难以应对,用户日常访问的网站是否安全…

Mysql主从复制及读写分离

🍓 简介:java系列技术分享(👉持续更新中…🔥) 🍓 初衷:一起学习、一起进步、坚持不懈 🍓 如果文章内容有误与您的想法不一致,欢迎大家在评论区指正🙏 🍓 希望这篇文章对你有所帮助,欢…

LaTeX插入参考文献

接着上一篇,用EndNote组织参考文献,然后再导入到LeTex中感觉不太好用,然后就学习了一下BibTeX来管理参考文献,发现还可以,这里记录一下,方便以后查阅。 LaTeX插入参考文献 thebibliographyBibTeX参考资料 t…

前端 sentry 接入钉钉机器人

sentry 接入钉钉机器人 打开钉钉,添加机器人 此时会得到Webhook地址,记录一下,以后会用到 sentry 端设置 看看这里有木有钉钉插件,有的话开启插件,并配置这里我说一下没有的情况下,我们何如设置 这里需要填写webhook url 这个的url 需要是一个公网的地址,不可以是本地…

使用Unity开发一个独立的区块链

Arouse Blockchain [Unity独立区块链] ❗️千万别被误导,上图内容虽然都在项目中可寻,但与目前区块链的业务代码关联不大,仅供宣传作用(总得放些图看着好看)。之所以有以上内容是项目有个目标功能是希望每个用户在区块链上都有一个独一无二的…

View UI Plus (iview)表格单选实现教程

View UI Plus 是 View Design 设计体系中基于 Vue.js 3 的一套 UI 组件库,主要用于企业级中后台系统 View UI,即原先的 iView,从 2019 年 10 月起正式更名为 View UI,并使用全新的 Logo View UI Plus 实现表格单选,这…

首次使用云服务器搭建网站(二)

书接上文,我们已经完成了服务器的租赁,宝塔面板的下载与安装。 接下来我们将正式开始网站搭建。 一、网站创建 点击网站、添加站点 输入网站域名、数据库选择MySQL数据库,选择utf8,数据库账号密码会自动生成。无论你要创建什么样…

互联网行业-镭速文件传输系统方案

互联网行业是一个快速变化和高度竞争的行业,这一行业需要传输大量的数据、代码和文件。在互联网企业的生产和运营过程中,需要传输各种敏感和大型的文件,例如业务报告、数据分析、软件代码等。这些文件需要在不同的部门、不同的地点之间高效地…

用敏捷工具Leangoo领歌做敏捷需求管理

传统的瀑布工作模式使用详细的需求说明书来表达需求,需求人员负责做需求调研,根据调研情况编制详细的需求说明书,进行需求评审,评审之后签字确认交给研发团队设计开发。在这样的环境下,需求文档是信息传递的主体&#…

小雉系统U盘安装包制作

​ 本文原地址: http://www.feitianzhi.com/boke/index.php/archives/57/ 概述 小雉系统可从线上系统制作安装包到U盘,制作的安装包可用于新系统的安装; 小雉系统只提供升级包,对应的安装包均是客户在应用升级包后按本文或http://www.f…

vite预渲染 vite-plugin-prerender 大坑记录

本文部分配置转自:vite预渲染怎么实现_猿耳盗铃的博客-CSDN博客 懒得重新写,贴下版本和自己踩的各种坑吧 以下为版本,本文只给vite vue3的建议,不一定适用,因为正常情况能build成功,我昨天中午之前一直没…

招商基金资深架构师教你如何搭建统一监控平台

随着数字化进程的加速和业务的高速发展,系统的复杂程度日益升级,为确保业务系统的连续性和稳定性,越来越多的企业想要建设统一的监控平台,但却不知道从哪里开始着手。比如: 有些企业会直接将监控系统页面集成到统一监…

Jmeter实现Dubbo接口测试

目录 前言: 一、准备 二、编写我们的测试工程 三、Jmeter来测试这个工程 前言: JMeter可以用来测试Dubbo接口的性能和负载。Dubbo是阿里巴巴的高性能RPC框架,常用于分布式服务的调用。为了测试Dubbo接口,需要使用JMeter提供的…

为什么说2023年最难招聘的岗位是高性能计算工程师?

随着毕业季的临近,高校毕业生将进入就业关键阶段。据统计,2023届全国高校毕业生预计达到1158万人,同比增加82万人,再创新高。尽管有千万的大学毕业生,但是企业反馈依然很难招聘到合适的高性能计算工程师。 这主要归因于…

「OceanBase 4.1 体验」OceanBase:解读领先的分布式数据库系统,功能与体验全解析

文章目录 前言一、关于 【OceanBase 4.1】征文活动(可跳过)二、OceanBase 产品了解2.1 初识 OceanBase2.2 什么是 OceanBase2.3 OceanBase 相关链接2.4 OceanBase 与传统数据库对比有何特别之处2.5 OceanBase 相关概念以及术语2.5.1 OceanBase 基本概念2…

【Docker】什么是Docker,它用来干什么

作者简介: 辭七七,目前大一,正在学习C/C,Java,Python等 作者主页: 七七的个人主页 文章收录专栏: 七七的闲谈 欢迎大家点赞 👍 收藏 ⭐ 加关注哦!💖&#x1f…

软件测试面试题(大全)

1.B/S架构和C/S架构区别 B/S 只需要有操作系统和浏览器就行,可以实现跨平台,客户端零维护,维护成本低,但是个性化能力低,响应速度较慢 C/S响应速度快,安全性强,一般应用于局域网中,因…

【Git原理与使用】-- 初步认识

目录 Git版本控制器的引入 版本控制器 Git安装(已安装可以跳过) Linux-centos Linux-ubuntu Git基本操作 创建Git本地仓库 配置 Git 认识工作区、暂存区、版本库 工作区、版本库 stage暂存区 工作区内容使用Git管理 Git版本控制器的引入 #&…

今年十八,期末速刷(操作系统篇1)

马上期末了,想问问各位期末考几科 我家学校网安考7科呜呜呜 只能出点文章一把梭了。。。 争取只挂一科 先来先算法(FCFS) 算法思想 我今天学FCFS只有一个要求 公平、公平 还是tnd公平 算法规则 按照进程的先后顺序来进行服务。 是否…