4-文献阅读-A Data-driven Base Station Sleeping Strategy Based on Traffic Prediction

目录

    • 文献阅读—A Data-driven Base Station Sleeping Strategy Based on Traffic Prediction
      • 0、选这篇文章的原因
      • 1、文章的主要内容和贡献
      • 2、使用的数据集
      • 3、结果及分析
      • 4、郭郭有话说

文献阅读—A Data-driven Base Station Sleeping Strategy Based on Traffic Prediction

0、选这篇文章的原因

在我读的综述文献里面指出了cellular traffic prediction 的显著应用就是设计sleeping strategies for BSs。当基站的流量需求比较低的时候,部分基站可以关闭或者可以在保证用户的服务质量的同时使用low-function 状态来节约能量。我想看看具体的研究是怎么做的。

1、文章的主要内容和贡献

  • 首先提出了时空小区流量预测模型:使用multi-graph convolutional network(MGCN)来提取空间特征,使用multi-channel LSTM提取时间特征。

  • 对MBS和SBS进行建模,使用clustering(?)和transfer learning 来衡量MBS和SBS的容量(我的理解是他是不是把基站进行了聚类,不同的基站能够提供的容量不同,往下看

    • 问:为什么要对基站的容量进行建模?因为原始数据集不提供。
    • 问:聚类的依据是什么?基站数量,POI数量,最大流量->Kmeans算法
      在这里插入图片描述
    • 问:迁移学习指的是什么?使用MBS的流量特征表征SBS的流量特征
  • 最后提出来BS休眠策略,来最小化网络的功耗。从公共数据中收集一些有限的信息,比如总流量和基站数。基于小区的流量预测和基站的容量建模寻求一个区域内基站的最佳数量(?)
    优化公式:

  1. 目标是最小化激活的基站的能量消耗
    min ⁡ n m , n s n m P m + n s P s \min_{n_m,n_s}n_mP_m+n_sP_s nm,nsminnmPm+nsPs
  2. 约束条件
    • 激活的基站应该能提供足够的容量,满足容量需求并且有剩余
      C m ( r ⃗ , n m ) + C s ( r ⃗ , n s ) ⩾ μ + Δ C_m(\vec{r} ,n_m)+C_s(\vec{r} ,n_s) \geqslant \mu + \Delta Cm(r ,nm)+Cs(r ,ns)μ+Δ
    • 激活的宏基站数量限制
    • 激活的微基站数量限制
      在这里插入图片描述

2、使用的数据集

  • Telecom Italia 意大利电信 2015
    链接指路
    • 数据集介绍:
      • This dataset was collected in the city of Milan, Italy, from November 1, 2013, to January 1, 2014.
      • 空域被分为100x100的网格,每个网格是235x235平方米
      • 在每个网格中记录了三种流量信息:short message service(SMS), call service(Call), Internet service
      • 原始数据包括Square ID, Time stamp, SMS-in, SMS-out, Call-in, Call-out and Internet
      • 这个数据集可以用于单变量、多变量的时空预测流量问题
  • POI(points of interest)信息
    POI information was recorded using Google Places API. Available:https://developers.google.com/maps
    每个方格手机12个不同的POI,包括银行,酒吧等数量
  • 基站数量信息
    BS information is obtained from OpenCellID. Available: https://opencellid.org/
    记录每个网格的基站数量
  • 社交活动:
    Social activity is collected through Dandelion API. Available:
    https://dandelion.eu
    社交活动对于流量预测有着很大的影响

3、结果及分析

在这里插入图片描述
ARIMA模型的偏差最大,因为ARIMA特别关注过去时刻的平均值。此外,LSTM优于ARIMA,因为LSTM能够捕获时间相关性。此外,ConvLSTM能够同时提取时空特征,因此具有比LSTM更好的预测性能。最重要的是,所提出的MGCNLSTM的性能最好,特别是图13中小区流量预测曲线的波峰和波谷。这是因为MGCN-LSTM利用了多图卷积,从各个方面捕捉空间特征。

误差的CDF图:
在这里插入图片描述
对于SMS流量,ARIMA、LSTM、ConvLSTM和MGCN-LSTM的绝对误差分别小于1335、622、158、103,概率为80%。与ConvLSTM相比,**MGCNLSTM的性能提高了34.8%。**同样,在图13(e)和图13(f)中,MGCN-LSTM比ConvLSTM分别提高了约47%和11.6%。
在这里插入图片描述
流量预测的优势:

  • 通过GCN模块,采用多图技术提取多个空间特征
  • 时域预测涉及POIs、BSs、社会活动和多周期特征
  • 采用注意机制对提取的特征进行优化

结论:网络容量取决于BS数量,和环境差异无关(POI数量,社交活动数量,基站数量)
宏基站的数量增加,网络容量和基站数量成线性增长趋势,但是在成熟中心,容量不会一直随基站的数量增加而增加,而是逐渐趋向饱和,这是因为小区密集化过程的干扰也不断增加
但是微基站的容量随基站数量的变化曲线却没有饱和区属,因为微基站的传输功率较低,告饶引起的容量饱和只出现在超密集网络的场景中,米兰的流量数据微基站并没有达到超密集的程度(我想在超密集网络的场景下做诶
在这里插入图片描述
结论:激活的微基站数量和流量的变化有关,宏基站变化不大。因为宏基站目标是无缝覆盖小区和用户移动,我们的策略是激活最少数量的宏基站,但流量负载超过基本水平时,才会激活更多的宏基站微基站增加网络容量,由于微基站的功耗是远小于宏基站的,所以肯定会为了节能尽可能多的启动微基站来提高网络容量。
结论:非线性模型和穷举搜索得到的最优数很接近。二次函数比线性函数更加精确
结论:郊区的流量比城市的流量小,所以基站数量也少
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/cd821a47583a45d2a770e0826a52eed0.png
结论:能耗和激活的基站数量有关
在这里插入图片描述

4、郭郭有话说

这篇文献就是通过时域和空域对流量进行预测,用预测的结果来决定基站激活的数量,进而降低消耗。其中基站的容量通过建模来获得,使用聚类把不同地区的基站聚为一类,然后使用迁移学习,农村包围城市的方法来得到全部基站的容量信息。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/289450.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Unity中URP下的添加雾效支持

文章目录 前言一、URP下Shader支持雾效的步骤1、添加雾效变体2、在Varying结构体中添加雾效因子3、在顶点着色器中,我们使用内置函数得到雾效因子4、在片元着色器中,把输出颜色 和 雾效因子混合输出 二、在Unity中打开雾效三、测试代码 前言 我们使用之…

Python学习笔记之(一)搭建Python 环境

搭建Python 环境 1. 使用工具准备1.1 Python 安装1.1.1 下载Python 安装包1.1.2 安装Python 1.2 VScode 安装1.2.1 下载VScode安装包1.2.2 给VScode安装Python 扩展 2. 第一次编写Python 程序 本篇文章以Windows 系统为例。 1. 使用工具准备 1.1 Python 安装 1.1.1 下载Pytho…

【JavaSE】string与StringBuilder和StringBuffer

区别: 不可变性: String: String 类是不可变的,一旦创建就不能被修改。对字符串的任何操作都会创建一个新的字符串对象。StringBuffer: StringBuffer 是可变的,允许对字符串进行修改,而不创建新…

案例089:基于微信小程序的校园综合服务平台设计与实现

文末获取源码 开发语言:Java 框架:SSM JDK版本:JDK1.8 数据库:mysql 5.7 开发软件:eclipse/myeclipse/idea Maven包:Maven3.5.4 小程序框架:uniapp 小程序开发软件:HBuilder X 小程序…

李沐机器学习系列1--- 线性规划

1 Introduction 1.1 线性回归函数 典型的线性回归函数 f ( x ) w ⃗ ⋅ x ⃗ f(x)\vec{w} \cdot \vec{x} f(x)w ⋅x 现实生活中,简单的线性回归问题很少,这里有一个简单的线性回归问题。房子的价格和房子的面积以及房子的年龄假设成线性关系。 p r …

Java项目:107SpringBoot房屋租赁网站

博主主页:Java旅途 简介:分享计算机知识、学习路线、系统源码及教程 文末获取源码 一、项目介绍 房屋租赁网站基于SpringBootMybatis开发,系统分为管理员和普通用户两种角色。 管理员功能如下: 登录修改密码查看用户房屋管理图…

内联函数的作用

目的 主要为了提升程序运行速度。 分析 当程序调用一个函数时,程序暂停执行当前指令,跳到函数体处执行,在函数执行完后,返回原来的位置继续执行。如果该函数为内联函数,则不同跳,是因为该内联函数直接插…

java每日一题——双色球系统(答案及编程思路)

前言: 打好基础,daydayup! 题目:要求如下(同时:红球每个号码不可以相同) 编程思路:1,创建一个可以录入数字的数组;2,生成一个可以随机生成数字的数组&#xf…

顶帽运算在OpenCv中的应用

项目背景 假如我们拍了一张自拍,想为自己的照片添加一个酷炫的火星飞舞的效果,素材库中正好有一张火焰的照片,如果想去除图中的火焰,只保留火星效果,可以使用顶帽子算法 图片中的火星部分正好属于比周围亮一些的斑块…

灰度发布及声明式资源管理(yaml文件)

一、三种常见的项目发布方式 1)蓝绿发布 2)灰度发布【常用】 3)滚动发布 应用程序升级,面临最大的问题是新旧业务之间的切换 立项-定稿-需求发布-开发-测试-发布,测试上线后,再完美也会有问题,为…

Windows下Jenkins自动化部署SpringBoot应用

Windows下Jenkins自动化部署SpringBoot应用 1、下载安装包 下载地址: 一个是 msi 程序: https://mirrors.aliyun.com/jenkins/windows/ 一个是 war 程序: https://get.jenkins.io/war-stable/ https://mirrors.jenkins.io/war/ 这里我…

Linux进程以及计划任务

一.程序和进程以及线程 内核功用:进程管理、内存管理、文件系统、网络功能、驱动程序、安全功能等 对于所有的操作系统,都有基本的功能 1.程序 保存在硬盘、光盘等介质中的可执行代码和数据(硬盘上躺着) 静态保存的代码 执行…

【好书推荐-第一期】《一书读懂物联网:基础知识+运行机制+工程实现》

😎 作者介绍:我是程序员洲洲,一个热爱写作的非著名程序员。CSDN全栈优质领域创作者、华为云博客社区云享专家、阿里云博客社区专家博主、前后端开发、人工智能研究生。公粽号:程序员洲洲。 🎈 本文专栏:本文…

DHCP定义

DHCP(动态主机配置协议)是一个局域网的网络协议。指的是由服务器控制一段IP地址范围,客户机登录服务器时就可以自动获得服务器分配的IP地址和子网掩码。默认情况下,DHCP作为Windows Server的一个服务组件不会被系统自动安装&#…

C#高级 05线程状态

(1)进程和线程之间的关系 进程可以理解为一个应用,那么线程则可以看为一个进程中的多个执行单元(一个进程可以启动多个线程); (2)进程之间如何通信 1.管道 2.消息队列 3.信号量 信…

vue 实现拐弯时间线,弯曲时间线,弯曲任务步骤条

需求&#xff1a; 实现可拐弯的步骤条功能 实现后效果如下&#xff1a; 代码部分&#xff1a; 创建步骤条组件Steps.vue <template><div><divstyle"width: 100%; display: flex; position: relative; margin-top: 20px"><div style"wi…

Hive详解、配置、数据结构、Hive CLI

一、Hive 认识 1. Hive 应用 问题&#xff1a;公司的经营状况&#xff1f; 主题一&#xff1a;财务现金流指标1.1&#xff1a;净现金流入/流出量指标1.2&#xff1a;现金转换周期预算执行状况指标2.1&#xff1a;预算内成本控制指标2.2&#xff1a;预算与实际支出的差异 主题…

进程与线程介绍

进程与线程介绍 一、介绍1, 定义2&#xff0c;通讯方式2.1 进程间的通讯方式&#xff0c;以及优缺点2.1.1 管道&#xff08;1&#xff09;无名管道&#xff08;PIPE&#xff09;&#xff08;2&#xff09;有名管道(FIFO) 2.1.2 消息队列&#xff08;Message Queue&#xff09;2…

【复盘】2023年终总结

大家好&#xff0c;我是qxlx 2023年马上就要结束了&#xff0c;在此周末空闲时间进行整体复盘一下2023年关于自己的生活、工作、学习进度&#xff0c;以此进行记录。 01 工作 粗略算起来&#xff0c;来北京已经3年之久&#xff0c;那时候还是一个懵懵懂懂的学生&#xff0c;…

Java学习苦旅(十七)——栈和队列

本篇博客将详细讲解Java中的栈和队列。 文章目录 栈概念Java中Stack常用方法代码实现 队列概念队列常用方法对比QueueDeque 代码实现Queue 结尾 栈 概念 栈&#xff1a;一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一…