以STM32为例,实现按键的短按和长按

以STM32为例,实现按键的短按和长按

目录

  • 以STM32为例,实现按键的短按和长按
    • 1 实现原理
    • 2 实现代码
    • 3 测试
    • 结束语

1 实现原理

简单来说就是通过设置一个定时器来定时扫描几个按键的状态,并分别记录按键按下的持续时间,通过时间的长短就可以判断出是长按还是短按。

本文硬件接线图如下:
在这里插入图片描述
在这里插入图片描述

2 实现代码

1、key.h
主要是一些按键引脚以及后面需要使用的变量定义。

#ifndef __KEY_H
#define __KEY_H	 
#include "sys.h"

#define KEY1_PORT  GPIOE
#define KEY1_PIN   GPIO_Pin_4
#define KEY2_PORT  GPIOE
#define KEY2_PIN   GPIO_Pin_3
#define KEY3_PORT  GPIOE
#define KEY3_PIN   GPIO_Pin_2
#define KEY4_PORT  GPIOA
#define KEY4_PIN   GPIO_Pin_0

// 按键引脚定义
typedef struct
{
    GPIO_TypeDef* port;          // GPIOx
    uint16_t      pin;           // GPIO PINx
    uint16_t      pressed_state; // 按键按下时的状态,0:按下时为低电平,1:按下时为高电平
}key_gpio_t;

// 按键状态
typedef enum
{
    KEY_RELEASE,         // 释放松开
    KEY_CONFIRM,         // 消抖确认
    KEY_SHORT_PRESSED,   // 短按
    KEY_LONG_PRESSED,    // 长按
}key_status_t;

// 按键事件
typedef enum
{
    EVENT_NULL,
    EVENT_SHORT_PRESSED,
    EVENT_LONG_PRESSED,
}key_event_t;

typedef struct
{
    key_status_t current_state; // 按键当前状态
    uint32_t  pressed_time;     // 按下时间    
    key_event_t key_event;      // 按键事件
}key_param_t;

uint8_t read_key_state(uint8_t index);
uint8_t key_scan(void);
void key_handle(void);
void key_timer_init(void);
void key_gpio_init(void);
void key_init(void);

#endif

2、key.c
按键的实现代码,包括定时器和引脚的初始化,按键的扫描和处理函数,等等。

/**
 ********************************************************************************************************
 * @file           key.c
 * @author         qiyiqi
 * @brief          按键驱动代码
 * MCU:            STM32F103ZE开发板
 * 按键原理:       设置一个1ms定时器定时扫描几个按键的状态,并分别记录按下的持续时间,通过时间可以判断是长按还是
 *                 短按。    
 * 注意事项:       此代码只是作为一个参考例程,如果不使用STM32的标准库,移植到其他MCU或者HAL库之类的,主要修改的
 *                 地方在初始化函数key_init(),按键读取函数read_key_state(),定时器初始化以及中断服务函数等。
 ********************************************************************************************************
 */
#include "key.h"
#include "stdio.h"

// 按键列表
key_gpio_t key_list[] =
{// 端口号,引脚号,有效电平
    {KEY1_PORT, KEY1_PIN, 0},  // 按下为0,松开为1
    {KEY2_PORT, KEY2_PIN, 0},
    {KEY3_PORT, KEY3_PIN, 0},  // 按下为1,松开为0
    {KEY4_PORT, KEY4_PIN, 1},
    /* 可以继续往下添加更多按键 */
};

// 按键数量
#define KEY_NUM_MAX      (sizeof(key_list)/sizeof(key_list[0]))  
#define CONFIRM_TIME     20    // 消抖时间 ms
#define LONG_PRESS_TIME  2000  // 长按时间窗 ms

// 按键配置
#define SHORT_RELEASE_VALID  1 // 0:短按按下时即刻生效,1:短按释放时生效,注意:如果配成0的话,长按的时候就一定会先触发短按
#define LONG_RELEASE_VALID   1 // 0:长按按下时即刻生效,1:长按释放时生效

key_param_t key_param[KEY_NUM_MAX]; // 保存所有按键的状态

// 读取按键状态
uint8_t read_key_state(uint8_t index)
{
    if(GPIO_ReadInputDataBit(key_list[index].port, key_list[index].pin) == key_list[index].pressed_state)
    {// 按键按下
        return 1; 
    }
    return 0;
}

// 扫描单个按键状态(需要按1ms频率扫描)
uint8_t key_scan(void)
{
    uint8_t key_press;
    uint8_t index;

    for(index = 0; index < KEY_NUM_MAX; index++)
    {// 根据按键列表依次扫描
        key_press = read_key_state(index);  // 读取按键状态

        switch (key_param[index].current_state)                                    
        {// 按键状态机
            case KEY_RELEASE:{// 释放状态
                if(key_press)                                                                                                 
                {// 按键按下
                    key_param[index].current_state = KEY_CONFIRM;
                }
                else
                {// 按键松开
                    key_param[index].pressed_time = 0; 
                }
                break;
            }
            case KEY_CONFIRM:{// 按键消抖
                if(key_press)
                {// 按键保持按下
                    if(++key_param[index].pressed_time > CONFIRM_TIME)    // 10ms
                    {// 完成消抖
                        key_param[index].current_state = KEY_SHORT_PRESSED;
					#if (SHORT_RELEASE_VALID == 0)  // 短按按下立马生效
						key_param[index].key_event = EVENT_SHORT_PRESSED;  // 短按事件生效
					#endif
                    }
                }
                else
                {// 按键松开
                    key_param[index].current_state = KEY_RELEASE;
                }
                break;
            }
            case KEY_SHORT_PRESSED:{// 短按
                if(key_press)
                {// 按键保持按下
                    if(++key_param[index].pressed_time > LONG_PRESS_TIME)  // 2000ms
                    {// 长按
                        key_param[index].current_state = KEY_LONG_PRESSED;
					#if (LONG_RELEASE_VALID == 0)  // 长按按下立马生效
						key_param[index].key_event = EVENT_LONG_PRESSED;  // 长按事件生效
					#endif
                    }
                }
                else   
                {// 按键松开
                    key_param[index].current_state = KEY_RELEASE;
				#if (SHORT_RELEASE_VALID == 1)  // 短按释放才生效
					key_param[index].key_event = EVENT_SHORT_PRESSED;  // 短按事件生效
				#endif
                }
                break;
            }
            case KEY_LONG_PRESSED:{// 长按
                if(!key_press)          
                {// 按键松开
                    key_param[index].current_state = KEY_RELEASE;
				#if (LONG_RELEASE_VALID == 1)  // 长按释放才生效
					key_param[index].key_event = EVENT_LONG_PRESSED;  // 长按事件生效
				#endif
                } 
                break;
            }
            default:{
                key_param[index].current_state = KEY_RELEASE;
            }
        }
    }
    return 0;                            
}

// 按键处理函数
void key_handle(void)
{
    uint8_t index;
    for (index = 0; index < KEY_NUM_MAX; index++)
    {// 检查有无按键按下
        if(key_param[index].key_event != 0)
        {// 有按键按下
			switch (index)
			{
				case 0:{// 按键1
					if(key_param[index].key_event == EVENT_SHORT_PRESSED)
					{// 短按
						printf("KEY1 SHORT PRESSED\n");
					}
					else if(key_param[index].key_event == EVENT_LONG_PRESSED)
					{// 长按
						printf("KEY1 LONG PRESSED\n");
					}
					break;
				}
				case 1:{// 按键2
					if(key_param[index].key_event == EVENT_SHORT_PRESSED)
					{// 短按
						printf("KEY2 SHORT PRESSED\n");
					}
					else if(key_param[index].key_event == EVENT_LONG_PRESSED)
					{// 长按
						printf("KEY2 LONG PRESSED\n");
					}
					break;
				}
				case 2:{// 按键3
					if(key_param[index].key_event == EVENT_SHORT_PRESSED)
					{// 短按
						printf("KEY3 SHORT PRESSED\n");
					}
					else if(key_param[index].key_event == EVENT_LONG_PRESSED)
					{// 长按
						printf("KEY3 LONG PRESSED\n");
					}
					break;
				}
				case 3:{// 按键4
					if(key_param[index].key_event == EVENT_SHORT_PRESSED)
					{// 短按
						printf("KEY4 SHORT PRESSED\n");
					}
					else if(key_param[index].key_event == EVENT_LONG_PRESSED)
					{// 长按
						printf("KEY4 LONG PRESSED\n");
					}
					break;
				}
				default:{
					break;
				}
			}
			key_param[index].key_event = EVENT_NULL;  // 清除该事件
        }
    }
}

// 定时器中断服务程序(用于定时扫描按键)
void TIM3_IRQHandler(void)
{
    if (TIM_GetITStatus(TIM3, TIM_IT_Update) != RESET)  // 检查TIM3更新中断发生与否
    {
        key_scan();  // 扫描按键
        TIM_ClearITPendingBit(TIM3, TIM_IT_Update);  // 清除TIMx更新中断标志 
    }
}

// 定时器初始化(定时1ms)
void key_timer_init(void)
{
    TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
    NVIC_InitTypeDef NVIC_InitStructure;

    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); //时钟使能
    
    //定时器TIM3初始化
    TIM_TimeBaseStructure.TIM_Period = 1000 - 1; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值    
    TIM_TimeBaseStructure.TIM_Prescaler = SystemCoreClock / 1000000 - 1; //设置用来作为TIMx时钟频率除数的预分频值
    TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置时钟分割:TDTS = Tck_tim
    TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式
    TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); //根据指定的参数初始化TIMx的时间基数单位
 
    TIM_ITConfig(TIM3,TIM_IT_Update,ENABLE ); //使能指定的TIM3中断,允许更新中断

    //中断优先级NVIC设置
    NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;  //TIM3中断
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;  //先占优先级0级
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;  //从优先级3级
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能
    NVIC_Init(&NVIC_InitStructure);  //初始化NVIC寄存器

    TIM_Cmd(TIM3, ENABLE);  //使能TIMx    
}

// 按键引脚初始化
void key_gpio_init(void)
{
    GPIO_InitTypeDef  GPIO_InitStructure;
     
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOE, ENABLE);    
    
    GPIO_InitStructure.GPIO_Pin = KEY1_PIN;                 
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;          
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;        
    GPIO_Init(KEY1_PORT, &GPIO_InitStructure);        

    GPIO_InitStructure.GPIO_Pin = KEY2_PIN;                 
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;          
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;        
    GPIO_Init(KEY2_PORT, &GPIO_InitStructure);

    GPIO_InitStructure.GPIO_Pin = KEY3_PIN;                 
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;          
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;        
    GPIO_Init(KEY3_PORT, &GPIO_InitStructure);

    GPIO_InitStructure.GPIO_Pin = KEY4_PIN;                 
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD;          
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;        
    GPIO_Init(KEY4_PORT, &GPIO_InitStructure);
}

// 按键初始化
void key_init(void)
{
    key_gpio_init();
    key_timer_init();
}

3、main.c
主函数入口,这里调用按键驱动的代码。

#include "delay.h"
#include "sys.h"
#include "usart.h"
#include "key.h"

int main(void)
{		
	delay_init();       // 延时函数初始化	  
	uart_init(115200);	// 串口初始化为115200
	key_init();         // 按键初始化
	
	while(1)
	{	    	
		key_handle();
	}
}

3 测试

通过串口打印按键扫描的结果,可以看到每个按键都是可以实现独立的长短按功能。

按键释放时有效,log如下:
注:每个按键的长短按都独立,互不影响。
请添加图片描述
按键按下时有效,log如下:
注:长按触发之前,短按必先触发。
请添加图片描述

结束语

本文以STM32为例讲解了按键长按和短按的实现方法,当然,这只是其中一种方法,实现的方式其实还是很多。
好了,如果还有什么问题,欢迎评论区留言,谢谢!

如果觉得本文有帮助,就…你懂的。
请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/288228.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

百度百科词条创建多久可以通过?

一个优质的百度百科词条&#xff0c;能提升个人或企业的品牌形象。因此&#xff0c;越来越多的人希望创建自己的百度百科词条&#xff0c;那么&#xff0c;创建一个百度百科词条到底需要多久才能通过审核呢&#xff1f;接下来伯乐网络传媒就来给大家分享一下。 一、百度百科词条…

【Qt之Quick模块】7. Quick基础、常用组件Item、Rectangle、Text、TextInput、TextEdit等

1. 概述 Qt Quick模块是编写QML应用程序的标准库。Qt QML模块提供QML引擎和语言基础结构&#xff0c;Qt Quick模块提供用QML创建用户界面所需的所有基本类型。它提供了一个可视化画布&#xff0c;包括用于创建和动画化可视化组件、接收用户输入、创建数据模型和视图以及延迟对…

静态网页设计——海贼王

前言 使用前端经典三件套HTMLCSSJS实现的海贼王静态网页课程设计&#xff0c;适合我们的童年&#xff01; 主要内容 首页 首页最上方有一个轮播图&#xff0c;可以自动切换图片&#xff0c;使用js实现。 轮播图往下&#xff0c;就是列出一些比较经典的海贼王影片&#xf…

2023年度最热 AI 应用 TOP 50,除了 ChatGPT 还有这么多宝藏

原文章链接&#xff1a;年度最热 AI 应用 TOP 50&#xff0c;除了 ChatGPT 还有这么多宝藏 - IT之家 更多消息&#xff1a;AI人工智能行业动态&#xff0c;aigc应用领域资讯 在 AI 工具激烈竞争的一年中&#xff0c;尽管ChatGPT在访问量上遥遥领先&#xff0c;但单次使用时长未…

Python之字符编码汇总

一、常见编码 ASCII&#xff1a;ASCII码即美国标准信息交换码(American Standard Code for Information Interchange)。由于计算机内部所有信息最终都是一个二进制值&#xff0c;而每一个二进制位&#xff08;bit&#xff09;有0和1两种状态&#xff0c;因此八个二进制位就可以…

gookit/color - Go语言命令行色彩使用库教程

gookit/color - Go语言命令行色彩使用库教程 1.安装2.基础颜色(16-color)3.256色彩/RGB风格 1.安装 go get github.com/gookit/color2.基础颜色(16-color) 提供通用的API方法&#xff1a;Print Printf Println Sprint Sprintf 1、例如&#xff1a; color.Yellow.Println(&q…

centos7 ping不通域名

如果ip能ping通&#xff0c;ping不通域名可以试试以下操作&#xff1a; 1.编辑resolv.conf文件 vi /etc/resolv.conf 添加 nameserver 8.8.8.8 2.编辑nsswitch.conf vi /etc/nsswitch.conf 改成下图所示&#xff1a; 3.编辑sysctl.conf vi /etc/sysctl.conf 加上两行内…

macOS跨进程通信: FIFO(有名管道) 创建实例

一&#xff1a; 简介 在类linux系统中管道分为有名管道和匿名管道。两者都能单方向的跨进程通信。 匿名管道&#xff08;pipe&#xff09;: 必须是父子进程之间&#xff0c;而且子进程只能由父进程fork() 出来的&#xff0c;才能继承父进程的管道句柄&#xff0c;一般mac 开发…

1分钟生成爆款风景视频,Stable Video Diffusion最简教程

AI视频是2024年的重头戏&#xff0c;各大AI厂商都在跑视频技术&#xff0c;快速推出更牛的黑科技&#xff0c;SD其实在11月底就出了一款官方视频大模型-SVD&#xff0c;来跟runway、pika抢这块大蛋糕。 之前生成的视频效果还不是很理想&#xff0c;远没runway效果好&#xff0c…

【Mybatis】深入学习MyBatis:高级特性与Spring整合

&#x1f34e;个人博客&#xff1a;个人主页 &#x1f3c6;个人专栏&#xff1a; Mybatis ⛳️ 功不唐捐&#xff0c;玉汝于成 目录 前言 正文 高级特性 1 一级缓存和二级缓存 一级缓存 二级缓存 2 延迟加载 5 整合Spring 1 MyBatis-Spring模块 2 事务管理 结…

如何在Windows安装Wnmp服务并实现固定地址远程访问

文章目录 前言1.Wnmp下载安装2.Wnmp设置3.安装cpolar内网穿透3.1 注册账号3.2 下载cpolar客户端3.3 登录cpolar web ui管理界面3.4 创建公网地址 4.固定公网地址访问 前言 WNMP是Windows系统下的绿色NginxMysqlPHP环境集成套件包&#xff0c;安装完成后即可得到一个Nginx MyS…

无辅源电压继电器 RWY-D2/3 180-440VAC 导轨安装 josef约瑟

RWY-D1型电压继电器&#xff1b; RWY-D2型电压继电器&#xff1b; 一、 概述 RWY-D系列电压继电器&#xff08;以下简称本继电器&#xff09;用于发电机、变压器和输电线的电器保护装置中&#xff0c;作为过电压保护或低电压闭锁的启动原件。本继电器为集成电路静态型继电器…

用户管理第2节课 -- idea 2023.2 创建表--鱼皮

二、【先确定idea版本&鱼皮是否一致&#xff0c;再决定看不看这行】建表 2.1 idea 里连接数据库&#xff0c;通过可视化建表 2.1.1 清空表中数据 的 命令 truncate 清空 2.1.2 先输入删除表&#xff0c;的命令&#xff0c;再选中这行命令&#xff0c;执行&#xff0c;…

Linux学习之系统编程2(关于进程及其相关的函数)

写在前面&#xff1a; 我的Linux的学习之路非常坎坷。第一次学习Linux是在大一下的开学没多久&#xff0c;结果因为不会安装VMware就无疾而终了&#xff0c;可以说是没开始就失败了。第二次学习Linux是在大一下快放暑假&#xff08;那个时候刚刚过完考试周&#xff09;&#xf…

k8s快速搭建

VMware16Pro虚拟机安装教程VMware16.1.2安装及各版本密钥CentOS7.4的安装包:提取码&#xff1a;lp6qVMware搭建Centos7虚拟机教程 搭建完一个镜像 关机 拍摄一个快照,克隆两个作为子节点 0. 环境准备 在开始之前&#xff0c;部署Kubernetes集群机器需要满足以下几个条件&#…

实验三-HBase数据库操作

第一步&#xff1a;首先登陆ssh&#xff0c;之前设置了无密码登陆&#xff0c;因此这里不需要密码&#xff1b;再切换目录至/usr/local/hadoop &#xff1b;再启动hadoop ssh localhost cd /usr/local/hadoop ./sbin/start-dfs.sh 输入命令jps&#xff0c;能看到NameNode,Data…

环境准备-VMware安装

照顾到很多人不是很会环境搭建,我这里会将搭建的步骤讲的细致点 第一步,VMware下载。目的是通过VMware搭建Linux服务器,因为大家大部分还是Windows的电脑,我们先下载虚拟机搭建一个Linux系统的服务器 下载完成之后,点击安装,如下: 点击“下一步” 勾选“我接受许可协议…

算法导论复习——CHP24 单源最短路

单源最短路径问题&#xff1a; 给定一个图G (V,E)&#xff0c;找出从给定的源点s∈V到其它每个结点v∈V的最短路径。 这样最短路径具有最优子结构性&#xff1a;两个结点之间的最短路径的任何子路径都是最短的。 基本概念 负权边&#xff1a;权重为负值的边称为负权重的边。 如…

AI计算,为什么要用GPU?

今天这篇文章&#xff0c;我们继续来聊聊芯片。 在之前的文章里&#xff0c;小枣君说过&#xff0c;行业里通常会把半导体芯片分为数字芯片和模拟芯片。其中&#xff0c;数字芯片的市场规模占比较大&#xff0c;达到70%左右。 数字芯片&#xff0c;还可以进一步细分&#xff0…

工具分享:有哪些开源知识库可以使用?

导语&#xff1a; 在信息爆炸的时代&#xff0c;我们常常需要从各种渠道获取知识和解决问题。开源知识库为我们提供了一个便捷的途径&#xff0c;让我们可以轻松地分享和获取知识。本文将介绍5个开源知识库&#xff0c;其中包括HelpLook&#xff0c;帮助你更好地解决问题。 1…