STM32存储左右互搏 SPI总线读写FRAM MB85RS2M

STM32存储左右互搏 SPI总线读写FRAM MB85RS2M

在中低容量存储领域,除了FLASH的使用,,还有铁电存储器FRAM的使用,相对于FLASH,FRAM写操作时不需要预擦除,所以执行写操作时可以达到更高的速度,其主要优点为没有FLASH持续写操作跨页地址需要变换的要求。相比于SRAM则具有非易失性, 因此价格方面会高一些。MB85RS2M是512K Byte(2M bit)的FRAM,能够按字节进行写入且没有写入等待时间。其管脚功能兼容FLASH:在这里插入图片描述
这里介绍STM32访问FRAM MB85RS2M的例程。采用STM32CUBEIDE开发平台,以STM32F401CCU6芯片为例,通过STM32 SPI硬件电路实现读写操作,通过USB虚拟串口进行控制。

STM32工程配置

首先建立基本工程并设置时钟:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
配置硬件SPI接口:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
增加配置PA4作为SPI软件代码控制输出的片选管脚
并增加PA2和PA3连接到/WP和/HOLD管脚,并保持输出高电平:
在这里插入图片描述
配置USB作为通讯口:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
保存并生成初始工程代码:
在这里插入图片描述

STM32工程代码

USB虚拟串口的使用参考:STM32 USB VCOM和HID的区别,配置及Echo功能实现(HAL)
代码里用到的微秒延时函数参考: STM32 HAL us delay(微秒延时)的指令延时实现方式及优化

这里的测试逻辑实现为:当USB虚拟串口收到任何数据时,STM32在内部对MB85RS2M写入从USB虚拟串口收到的数据,然后再回读出来,通过USB虚拟串口发送出去。

USB接收数据的代码:
在这里插入图片描述

static int8_t CDC_Receive_FS(uint8_t* Buf, uint32_t *Len)
{
  /* USER CODE BEGIN 6 */
	extern uint8_t cmd;
	extern uint8_t * RData;
	extern uint32_t RDataLen;

	RData = Buf;
	RDataLen = *Len;
	cmd = 1;

  USBD_CDC_SetRxBuffer(&hUsbDeviceFS, &Buf[0]);
  USBD_CDC_ReceivePacket(&hUsbDeviceFS);
  return (USBD_OK);
  /* USER CODE END 6 */
}

新建MB85RS2M访问函数头文件MB85RS2M.h

#ifndef INC_MB85RS2M_H_
#define INC_MB85RS2M_H_
#include "main.h"

/*To define operation code*/
#define WREN 0x06    //Set Write Enable Latch
#define WRDI 0x04    //Reset Write Enable Latch
#define RDSR 0x05    //Read Status Register
#define WRSR 0x01    //Write Status Register
#define READ 0x03    //Read Memory Code
#define WRITE 0x02   //Write Memory Code
#define RDID 0x9F    //Read Device ID

#define MB85RS2M_ID 0x03487F04

uint32_t MB85RS2M_ReadID(void);
uint8_t MB85RS2M_Init(void);
void MB85RS2M_Set_Write_Enable_Latch(void);
void MB85RS2M_Reset_Write_Enable_Latch(void);
void MB85RS2M_Write_Status_Register(uint8_t SRV);
uint8_t MB85RS2M_Read_Status_Register(void);
void MB85RS2M_Write_Memory(uint8_t * wd, uint32_t addr, uint32_t len);
void MB85RS2M_Read_Memory(uint8_t * rd, uint32_t addr, uint32_t len);

#endif /* INC_MB85RS2M_H_ */

新建MB85RS16访问函数源文件MB85RS2M.c

//Written by Pegasus Yu in 2023

#include "MB85RS2M.h"
#include <string.h>

#define SPI1_CS_L HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_RESET)
#define SPI1_CS_H HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_SET)
extern SPI_HandleTypeDef hspi1;
extern void PY_Delay_us_t(uint32_t Delay);


uint32_t MB85RS2M_ReadID(void)
{
	uint8_t ftd[5];
	uint8_t frd[5];
	uint8_t Manufacturer_ID;
	uint8_t Continuation_Code;
	uint8_t Product_ID_L;
	uint8_t Product_ID_H;

	ftd[0]=RDID;


	SPI1_CS_L;

	HAL_SPI_TransmitReceive(&hspi1, ftd, frd, 5, 0xFFFFFFFF);

	SPI1_CS_H;

	Manufacturer_ID = frd[1];
	Continuation_Code = frd[2];
	Product_ID_L = frd[3];
	Product_ID_H = frd[4];

	return ((Product_ID_H<<24)|(Product_ID_L<<16)|(Continuation_Code<<8)|(Manufacturer_ID));
}

uint8_t MB85RS2M_Init(void)
{
	uint8_t st = 0;

	for(uint8_t i=0; i<4; i++)
	{
		if(MB85RS2M_ReadID()==MB85RS2M_ID)
		{
			st = 1;
			break;
		}

	}

	return st;

}


/*
 * WEL is reset after the following operations which means every write operation must follow once WREN operation MB85RS2M_Set_Write_Enable_Latch().
 * After power ON.
 * After WRDI command recognition.
 * At the rising edge of CS after WRSR command recognition.
 * At the rising edge of CS after WRITE command recognition.
 */
void MB85RS2M_Set_Write_Enable_Latch(void)
{
    uint8_t cmd = WREN;
	SPI1_CS_L;

	HAL_SPI_Transmit(&hspi1, &cmd, 1, 0xFFFFFFFF);

	SPI1_CS_H;
}


void MB85RS2M_Reset_Write_Enable_Latch(void)
{
    uint8_t cmd = WRDI;
	SPI1_CS_L;

	HAL_SPI_Transmit(&hspi1, &cmd, 1, 0xFFFFFFFF);

	SPI1_CS_H;
}


void MB85RS2M_Write_Status_Register(uint8_t SRV)
{
    uint8_t data[2];
    data[0] = WRSR;
    data[1] = SRV;

    MB85RS2M_Set_Write_Enable_Latch();

    PY_Delay_us_t(2);

	SPI1_CS_L;

	HAL_SPI_Transmit(&hspi1, data, 2, 0xFFFFFFFF);

	SPI1_CS_H;
}

uint8_t MB85RS2M_Read_Status_Register(void)
{
    uint8_t cmd[2];
    uint8_t data[2];
    uint8_t SRV;

    cmd[0] = RDSR;

	SPI1_CS_L;

	HAL_SPI_TransmitReceive(&hspi1, cmd, data, 2, 0xFFFFFFFF);

	SPI1_CS_H;

	SRV = data[1];
	return SRV;

}

/*
 * wd: data buffer pointer
 * addr: address to operate for MB85RS2M
 * len: data length to be written
 */

void MB85RS2M_Write_Memory(uint8_t * wd, uint32_t addr, uint32_t len)
{
    uint8_t data[len+4];
    data[0] = WRITE;
    data[1] = (uint8_t)(addr>>16);
    data[2] = (uint8_t)(addr>>8);
    data[3] = (uint8_t)addr;

    memcpy(data+4, wd, len);

    MB85RS2M_Set_Write_Enable_Latch();

    PY_Delay_us_t(2);

	SPI1_CS_L;

	HAL_SPI_Transmit(&hspi1, data, len+4, 0xFFFFFFFF);

	SPI1_CS_H;
}


/*
 * rd: data buffer pointer
 * addr: address to operate for MB85RS2M
 * len: data length to be written
 */

void MB85RS2M_Read_Memory(uint8_t * rd, uint32_t addr, uint32_t len)
{
    uint8_t cmd[len+4];
    uint8_t data[len+4];
    cmd[0] = READ;
    cmd[1] = (uint8_t)(addr>>16);
    cmd[2] = (uint8_t)(addr>>8);
    cmd[3] = (uint8_t)addr;

	SPI1_CS_L;

	HAL_SPI_TransmitReceive(&hspi1, cmd, data , len+4, 0xFFFFFFFF);

	SPI1_CS_H;

	memcpy(rd, data+4, len);
}

完整的main.c主文件代码如下:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
//Written by Pegasus Yu in 2023
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "usb_device.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <string.h>
#include "MB85RS2M.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
uint8_t CDC_Transmit_FS(uint8_t* Buf, uint16_t Len);
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{
  __IO uint32_t firstms, secondms;
  __IO uint32_t counter = 0;

  firstms = HAL_GetTick()+1;
  secondms = firstms+1;

  while(uwTick!=firstms) ;

  while(uwTick!=secondms) counter++;

  usDelayBase = ((float)counter)/1000;
}

void PY_Delay_us_t(uint32_t Delay)
{
  __IO uint32_t delayReg;
  __IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}

void PY_usDelayOptimize(void)
{
  __IO uint32_t firstms, secondms;
  __IO float coe = 1.0;

  firstms = HAL_GetTick();
  PY_Delay_us_t(1000000) ;
  secondms = HAL_GetTick();

  coe = ((float)1000)/(secondms-firstms);
  usDelayBase = coe*usDelayBase;
}

void PY_Delay_us(uint32_t Delay)
{
  __IO uint32_t delayReg;

  __IO uint32_t msNum = Delay/1000;
  __IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);

  if(msNum>0) HAL_Delay(msNum);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t cmd=0;          //for status control
uint8_t * RData;        //USB rx data pointer
uint32_t RDataLen;      //USB rx data length
uint8_t * TData;        //USB tx data pointer
uint32_t TDataLen;      //USB tx data length


uint8_t MB85RS2M_Status = 0;
uint16_t MB85RS2M_OPADDR = 0;
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USB_DEVICE_Init();
  MX_SPI1_Init();
  /* USER CODE BEGIN 2 */
  PY_usDelayTest();
  PY_usDelayOptimize();

  MB85RS2M_Status = MB85RS2M_Init();
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
	if(cmd==1)
	{
		cmd = 0;

		if(MB85RS2M_Status==1)
		{
			MB85RS2M_OPADDR = 0; //Set operation address here

			MB85RS2M_Write_Memory(RData, MB85RS2M_OPADDR, RDataLen);

	        PY_Delay_us_t(2);

			uint8_t rd[RDataLen];
			MB85RS2M_Read_Memory(rd, MB85RS2M_OPADDR, RDataLen);

			TData = rd;
			TDataLen = RDataLen;
			CDC_Transmit_FS(TData, TDataLen);

		}
		else
		{
			CDC_Transmit_FS("MB85RS2M ID read failure!\r\n", strlen("MB85RS2M ID read failure!\r\n"));
		}

	}

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 25;
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
  RCC_OscInitStruct.PLL.PLLQ = 7;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief SPI1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_SPI1_Init(void)
{

  /* USER CODE BEGIN SPI1_Init 0 */

  /* USER CODE END SPI1_Init 0 */

  /* USER CODE BEGIN SPI1_Init 1 */

  /* USER CODE END SPI1_Init 1 */
  /* SPI1 parameter configuration*/
  hspi1.Instance = SPI1;
  hspi1.Init.Mode = SPI_MODE_MASTER;
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  hspi1.Init.NSS = SPI_NSS_SOFT;
  hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi1.Init.CRCPolynomial = 10;
  if (HAL_SPI_Init(&hspi1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SPI1_Init 2 */

  /* USER CODE END SPI1_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOA, GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4, GPIO_PIN_SET);

  /*Configure GPIO pins : PA2 PA3 PA4 */
  GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

STM32范例测试

上述范例的测试效果如下:
在这里插入图片描述

STM32例程下载

STM32F401CCU6 I2C总线读写FRAM MB85RS2M例程

–End–

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/287594.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Docker就应该这么学-01

第一章 容器与开发语言 1.1 Docker 最近一段时间&#xff0c;云计算领域最火的莫过于“容器”一词。提到容器&#xff0c;就不得不提 Docker,可以说 Docker 己经成为了容器的代名词。那么&#xff0c;什么是 Docker ? Docker 又能做什么呢&#xff1f;本章 我们就来简单介绍…

【MPC学习笔记】01:MPC简介(Lecture 1_1 Unconstrained MPC)

本笔记来自北航诸兵老师的课程 课程地址&#xff1a;模型预测控制&#xff08;2022春&#xff09;lecture 1-1 Unconstrained MPC 文章目录 0 MPC 简介0.1 案例引入0.2 系统模型0.3 MPC的优点0.4 MPC的缺点0.5 MPC的未来 1 详细介绍 0 MPC 简介 0.1 案例引入 MPC&#xff08;…

关于简单的数据可视化

1. 安装数据可视化必要的openpyxl、pandas&#xff0c;matplotlib等软件包 使用清华源&#xff0c;命令如下&#xff1a; pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn pandaspip install -i https://pypi.tuna.tsingh…

CSU计算机学院2021年C语言期末题目思路分享(后两道题)

文章目录 E: 实数相加——大数加法的拓展原题题目描述输入输出样例输入样例输出 题目思路实现步骤代码和注释 F: 谍影寻踪——链表的思想和运用原题题目描述输入输出样例输入样例输出 题目思路 一点感想 E: 实数相加——大数加法的拓展 原题 题目描述 C语言就要期末考试了&a…

com.gexin.platform 依赖下载问题

打包时报错显示&#xff1a; com.gexin.platform:gexin-rp-sdk-http:pom:4.1.1.4 failed to transfer from http://0.0.0.0/ 解决办法&#xff1a; 1、在idea中找到maven中的设置的settings.xml 2、根据路径找到settings.xml文件&#xff0c;添加以下内容 <mirror><…

2023春季李宏毅机器学习笔记 01 :正确认识 ChatGPT

资料 课程主页&#xff1a;https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.phpGithub&#xff1a;https://github.com/Fafa-DL/Lhy_Machine_LearningB站课程&#xff1a;https://space.bilibili.com/253734135/channel/collectiondetail?sid2014800 一、对Chatgpt的误解…

『华为云耀云服务器实战』|云服务器如何快速搭建个人博客(图文详解)

文章目录 引言一、云耀云服务器L实例介绍1.1 准备一个华为云耀云服务器1.2 重置实例密码1.3 利用xshell 远程连接 二、安装环境软件2.1 安装git准备远程拉取2.2 安装Docker 和 Docker compose 三、博客开源项目介绍3.1 操作界面展览 四、拉取项目搭建个人博客4.1 拉取项目进行配…

【算法】一维、二维前缀和 解决算法题(C++)

文章目录 1. 前缀和算法 介绍2. 一维前缀和 模板引入DP34【模板】前缀和 3. 利用一维前缀和 解题724.寻找数组的中心下标238.除自身以外数组的乘积560.和为K的子数组974.和可被K整除的子数组525.连续数组 二维前缀和 模板1314.矩阵区域和 1. 前缀和算法 介绍 前缀和算法 用于高…

白话机器学习的数学-3-评估

1、 模型评估 那我们如何测量预测函数 fθ(x)的正确性&#xff0c;也就是精度呢&#xff1f; 观察函数的图形&#xff0c;看它能否很好地拟合训练数据&#xff1a; 这是只有一个变量的简单问题&#xff0c;所以才能在图上展 示出来。 过像多重回归这样的问题&#xff0c;变量增…

x-cmd pkg | bit - 实验性的现代化 git CLI

目录 简介首次用户功能特点竞品和相关作品进一步探索 简介 bit&#xff0c;由 Chris Walz 于 2020 年使用 Go 语言开发&#xff0c;提供直观的命令行补全提示和建立在 git 命令之上的封装命令&#xff0c;旨在建立完全兼容 git 命令的现代化 CLI。 首次用户 使用 x bit 即可自…

【华为机试】2023年真题B卷(python)-矩阵元素的边界值

一、题目 题目描述&#xff1a; 给定一个N*M矩阵&#xff0c;请先找出M个该矩阵中每列元素的最大值&#xff0c;然后输出这M个值中的最小值。 补充说明: N和M的取值范围均为: [0,100] 二、示例 示例1&#xff1a; 输入: [[1,2],[3,4]] 输出: 3 说明: 第一列元素为: 1和3&…

Linux 进程(五) 调度与切换

概念准备 当一个进程放在cpu上运行时&#xff0c;是必须要把进程的代码跑完才会进行下一个进程吗&#xff1f;答案肯定是 不对。现在的操作系统都是基于时间片轮转执行的。 时间片&#xff08;timeslice&#xff09;又称为“量子&#xff08;quantum&#xff09;”或“处理器片…

求职招聘小程序平台运营版系统源码 全开源源代码 附带完整的安装与部署教程

近年来&#xff0c;移动互联网的普及&#xff0c;求职招聘行业也在逐步向数字化转型。在这个过程中&#xff0c;小程序因其便捷性、即时性等特点&#xff0c;成为了求职者和招聘方的新宠。罗峰来给大家分享一款求职招聘小程序平台运营版系统源码&#xff0c;致力于为用户提供高…

安装elasticsearch、kibana、IK分词器、扩展IK词典

安装elasticsearch、kibana、IK分词器、扩展IK词典 后面还会安装kibana&#xff0c;这个会提供可视化界面方面学习。 需要注意的是elasticsearch和kibana版本一定要一样&#xff01;&#xff01;&#xff01; 否则就像这样 elasticsearch 1、创建网络 因为我们还需要部署k…

Unable to connect to Redis server

报错内容&#xff1a; Exception in thread "main" org.redisson.client.RedisConnectionException: java.util.concurrent.ExecutionException: org.redisson.client.RedisConnectionException: Unable to connect to Redis server: 175.24.186.230/175.24.186.230…

Elasticsearch:带有自查询检索器的聊天机器人示例

本工作簿演示了 Elasticsearch 的自查询检索器 (self-query retriever) 将问题转换为结构化查询并将结构化查询应用于 Elasticsearch 索引的示例。 在开始之前&#xff0c;我们首先使用 langchain 将文档分割成块&#xff0c;然后使用 ElasticsearchStore.from_documents 创建…

多粒度在研究中的应用

FontDiffuser: One-Shot Font Generation via Denoising Diffusion with Multi-Scale Content Aggregation and Style Contrastive Learning 存在的问题 现有的字体生成方法虽然取得了令人满意的性能&#xff0c;但在处理复杂字和风格变化较大的字符(尤其是中文字符)时&#x…

lunux(mysql下载以及操作)

下载mysql 查看镜像 docker images 下载MySQL镜像 mysql/mysql-server:8.0 创建文件夹&#xff0c;创建配置文件和放数据文件 mkdir -p /data/mysql/{conf,,data} 创建配置文件 my.cnf 写入配置文件my.cnf的代码 [client] default-character-setutf8[mysql] de…

MySQL数据库高级SQL语句及存储过程

目录 一、高级SQL语句 &#xff08;一&#xff09;case语句 1.语法定义 2.示例 &#xff08;二&#xff09;空值(NULL) 和 无值( ) 1.区别 2.示例 &#xff08;1&#xff09;字符长度 &#xff08;2&#xff09;判断方法 ① 空值(NULL) ② 无值( ) &#xff08;3…

了解Apache 配置与应用

本章内容 理解 Apache 连接保持 掌握 Apache 的访问控制 掌握 Apache 日志管理的方法 Apache HTTP Server 之所以受到众多企业的青睐&#xff0c;得益于其代码开源、跨平台、功能 模块化、可灵活定制等诸多优点&#xff0c;不仅性能稳定&#xff0c;在安全性方面的表现也十分…