Redis集群部署

Redis集群部署

  • 1.单机安装Redis
  • 2.Redis主从集群
    • 2.1.集群结构
    • 2.2.准备实例和配置
    • 2.3.启动
    • 2.4.开启主从关系
    • 2.5.测试
  • 3.搭建哨兵集群
    • 3.1.集群结构
    • 3.2.准备实例和配置
    • 3.3.启动
    • 3.4.测试
  • 4.搭建分片集群
    • 4.1.集群结构
    • 4.2.准备实例和配置
    • 4.3.启动
    • 4.4.创建集群
    • 4.5.测试
    • 4.5.测试

本章是基于CentOS7下的Redis集群教程,包括:

  • 单机安装Redis
  • Redis主从
  • Redis分片集群

1.单机安装Redis

首先需要安装Redis所需要的依赖:

yum install -y gcc tcl

然后将课前资料提供的Redis安装包上传到虚拟机的任意目录:

image-20210629114325516

例如,我放到了/tmp目录:

image-20210629114830642

解压缩:

tar -xvf redis-6.2.4.tar.gz

解压后:

image-20210629114941810

进入redis目录:

cd redis-6.2.4

运行编译命令:

make && make install

如果没有出错,应该就安装成功了。

然后修改redis.conf文件中的一些配置:

# 绑定地址,默认是127.0.0.1,会导致只能在本地访问。修改为0.0.0.0则可以在任意IP访问
bind 0.0.0.0
# 数据库数量,设置为1
databases 1

启动Redis:

redis-server redis.conf

停止redis服务:

redis-cli shutdown

2.Redis主从集群

2.1.集群结构

我们搭建的主从集群结构如图:

image-20210630111505799

共包含三个节点,一个主节点,两个从节点。

这里我们会在同一台虚拟机中开启3个redis实例,模拟主从集群,信息如下:

IPPORT角色
192.168.150.1017001master
192.168.150.1017002slave
192.168.150.1017003slave

2.2.准备实例和配置

要在同一台虚拟机开启3个实例,必须准备三份不同的配置文件和目录,配置文件所在目录也就是工作目录。

1)创建目录

我们创建三个文件夹,名字分别叫7001、7002、7003:

# 进入/tmp目录
cd /tmp
# 创建目录
mkdir 7001 7002 7003

如图:

image-20210630113929868

2)恢复原始配置

修改redis-6.2.4/redis.conf文件,将其中的持久化模式改为默认的RDB模式,AOF保持关闭状态。

# 开启RDB
# save ""
save 3600 1
save 300 100
save 60 10000

# 关闭AOF
appendonly no

3)拷贝配置文件到每个实例目录

然后将redis-6.2.4/redis.conf文件拷贝到三个目录中(在/tmp目录执行下列命令):

# 方式一:逐个拷贝
cp redis-6.2.4/redis.conf 7001
cp redis-6.2.4/redis.conf 7002
cp redis-6.2.4/redis.conf 7003
# 方式二:管道组合命令,一键拷贝
echo 7001 7002 7003 | xargs -t -n 1 cp redis-6.2.4/redis.conf

4)修改每个实例的端口、工作目录

修改每个文件夹内的配置文件,将端口分别修改为7001、7002、7003,将rdb文件保存位置都修改为自己所在目录(在/tmp目录执行下列命令):

sed -i -e 's/6379/7001/g' -e 's/dir .\//dir \/tmp\/7001\//g' 7001/redis.conf
sed -i -e 's/6379/7002/g' -e 's/dir .\//dir \/tmp\/7002\//g' 7002/redis.conf
sed -i -e 's/6379/7003/g' -e 's/dir .\//dir \/tmp\/7003\//g' 7003/redis.conf

5)修改每个实例的声明IP

虚拟机本身有多个IP,为了避免将来混乱,我们需要在redis.conf文件中指定每一个实例的绑定ip信息,格式如下:

# redis实例的声明 IP
replica-announce-ip 192.168.150.101

每个目录都要改,我们一键完成修改(在/tmp目录执行下列命令):

# 逐一执行
sed -i '1a replica-announce-ip 192.168.150.101' 7001/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7002/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7003/redis.conf

# 或者一键修改
printf '%s\n' 7001 7002 7003 | xargs -I{} -t sed -i '1a replica-announce-ip 192.168.150.101' {}/redis.conf

2.3.启动

为了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:

# 第1个
redis-server 7001/redis.conf
# 第2个
redis-server 7002/redis.conf
# 第3个
redis-server 7003/redis.conf

启动后:

image-20210630183914491

如果要一键停止,可以运行下面命令:

printf '%s\n' 7001 7002 7003 | xargs -I{} -t redis-cli -p {} shutdown

2.4.开启主从关系

现在三个实例还没有任何关系,要配置主从可以使用replicaof 或者slaveof(5.0以前)命令。

有临时和永久两种模式:

  • 修改配置文件(永久生效)

    • 在redis.conf中添加一行配置:slaveof <masterip> <masterport>
  • 使用redis-cli客户端连接到redis服务,执行slaveof命令(重启后失效):

    slaveof <masterip> <masterport>
    

注意:在5.0以后新增命令replicaof,与salveof效果一致。

这里我们为了演示方便,使用方式二。

通过redis-cli命令连接7002,执行下面命令:

# 连接 7002
redis-cli -p 7002
# 执行slaveof
slaveof 192.168.150.101 7001

通过redis-cli命令连接7003,执行下面命令:

# 连接 7003
redis-cli -p 7003
# 执行slaveof
slaveof 192.168.150.101 7001

然后连接 7001节点,查看集群状态:

# 连接 7001
redis-cli -p 7001
# 查看状态
info replication

结果:

image-20210630201258802

2.5.测试

执行下列操作以测试:

  • 利用redis-cli连接7001,执行set num 123

  • 利用redis-cli连接7002,执行get num,再执行set num 666

  • 利用redis-cli连接7003,执行get num,再执行set num 888

可以发现,只有在7001这个master节点上可以执行写操作,7002和7003这两个slave节点只能执行读操作。

3.搭建哨兵集群

3.1.集群结构

这里我们搭建一个三节点形成的Sentinel集群,来监管之前的Redis主从集群。如图:

image-20210701215227018

三个sentinel实例信息如下:

节点IPPORT
s1192.168.150.10127001
s2192.168.150.10127002
s3192.168.150.10127003

3.2.准备实例和配置

要在同一台虚拟机开启3个实例,必须准备三份不同的配置文件和目录,配置文件所在目录也就是工作目录。

我们创建三个文件夹,名字分别叫s1、s2、s3:

# 进入/tmp目录
cd /tmp
# 创建目录
mkdir s1 s2 s3

如图:

image-20210701215534714

然后我们在s1目录创建一个sentinel.conf文件,添加下面的内容:

port 27001
sentinel announce-ip 192.168.150.101
sentinel monitor mymaster 192.168.150.101 7001 2
sentinel down-after-milliseconds mymaster 5000
sentinel failover-timeout mymaster 60000
dir "/tmp/s1"

解读:

  • port 27001:是当前sentinel实例的端口
  • sentinel monitor mymaster 192.168.150.101 7001 2:指定主节点信息
    • mymaster:主节点名称,自定义,任意写
    • 192.168.150.101 7001:主节点的ip和端口
    • 2:选举master时的quorum值

然后将s1/sentinel.conf文件拷贝到s2、s3两个目录中(在/tmp目录执行下列命令):

# 方式一:逐个拷贝
cp s1/sentinel.conf s2
cp s1/sentinel.conf s3
# 方式二:管道组合命令,一键拷贝
echo s2 s3 | xargs -t -n 1 cp s1/sentinel.conf

修改s2、s3两个文件夹内的配置文件,将端口分别修改为27002、27003:

sed -i -e 's/27001/27002/g' -e 's/s1/s2/g' s2/sentinel.conf
sed -i -e 's/27001/27003/g' -e 's/s1/s3/g' s3/sentinel.conf

3.3.启动

为了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:

# 第1个
redis-sentinel s1/sentinel.conf
# 第2个
redis-sentinel s2/sentinel.conf
# 第3个
redis-sentinel s3/sentinel.conf

启动后:

image-20210701220714104

3.4.测试

尝试让master节点7001宕机,查看sentinel日志:

image-20210701222857997

查看7003的日志:

image-20210701223025709

查看7002的日志:

image-20210701223131264

4.搭建分片集群

4.1.集群结构

分片集群需要的节点数量较多,这里我们搭建一个最小的分片集群,包含3个master节点,每个master包含一个slave节点,结构如下:

image-20210702164116027

这里我们会在同一台虚拟机中开启6个redis实例,模拟分片集群,信息如下:

IPPORT角色
192.168.150.1017001master
192.168.150.1017002master
192.168.150.1017003master
192.168.150.1018001slave
192.168.150.1018002slave
192.168.150.1018003slave

4.2.准备实例和配置

删除之前的7001、7002、7003这几个目录,重新创建出7001、7002、7003、8001、8002、8003目录:

# 进入/tmp目录
cd /tmp
# 删除旧的,避免配置干扰
rm -rf 7001 7002 7003
# 创建目录
mkdir 7001 7002 7003 8001 8002 8003

在/tmp下准备一个新的redis.conf文件,内容如下:

port 6379
# 开启集群功能
cluster-enabled yes
# 集群的配置文件名称,不需要我们创建,由redis自己维护
cluster-config-file /tmp/6379/nodes.conf
# 节点心跳失败的超时时间
cluster-node-timeout 5000
# 持久化文件存放目录
dir /tmp/6379
# 绑定地址
bind 0.0.0.0
# 让redis后台运行
daemonize yes
# 注册的实例ip
replica-announce-ip 192.168.150.101
# 保护模式
protected-mode no
# 数据库数量
databases 1
# 日志
logfile /tmp/6379/run.log

将这个文件拷贝到每个目录下:

# 进入/tmp目录
cd /tmp
# 执行拷贝
echo 7001 7002 7003 8001 8002 8003 | xargs -t -n 1 cp redis.conf

修改每个目录下的redis.conf,将其中的6379修改为与所在目录一致:

# 进入/tmp目录
cd /tmp
# 修改配置文件
printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t sed -i 's/6379/{}/g' {}/redis.conf

4.3.启动

因为已经配置了后台启动模式,所以可以直接启动服务:

# 进入/tmp目录
cd /tmp
# 一键启动所有服务
printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t redis-server {}/redis.conf

通过ps查看状态:

ps -ef | grep redis

发现服务都已经正常启动:

image-20210702174255799

如果要关闭所有进程,可以执行命令:

ps -ef | grep redis | awk '{print $2}' | xargs kill

或者(推荐这种方式):

printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t redis-cli -p {} shutdown

4.4.创建集群

虽然服务启动了,但是目前每个服务之间都是独立的,没有任何关联。

我们需要执行命令来创建集群,在Redis5.0之前创建集群比较麻烦,5.0之后集群管理命令都集成到了redis-cli中。

1)Redis5.0之前

Redis5.0之前集群命令都是用redis安装包下的src/redis-trib.rb来实现的。因为redis-trib.rb是有ruby语言编写的所以需要安装ruby环境。

# 安装依赖
yum -y install zlib ruby rubygems
gem install redis

然后通过命令来管理集群:

# 进入redis的src目录
cd /tmp/redis-6.2.4/src
# 创建集群
./redis-trib.rb create --replicas 1 192.168.150.101:7001 192.168.150.101:7002 192.168.150.101:7003 192.168.150.101:8001 192.168.150.101:8002 192.168.150.101:8003

2)Redis5.0以后

我们使用的是Redis6.2.4版本,集群管理以及集成到了redis-cli中,格式如下:

redis-cli --cluster create --cluster-replicas 1 192.168.150.101:7001 192.168.150.101:7002 192.168.150.101:7003 192.168.150.101:8001 192.168.150.101:8002 192.168.150.101:8003

命令说明:

  • redis-cli --cluster或者./redis-trib.rb:代表集群操作命令
  • create:代表是创建集群
  • --replicas 1或者--cluster-replicas 1 :指定集群中每个master的副本个数为1,此时节点总数 ÷ (replicas + 1) 得到的就是master的数量。因此节点列表中的前n个就是master,其它节点都是slave节点,随机分配到不同master

运行后的样子:

image-20210702181101969

这里输入yes,则集群开始创建:

image-20210702181215705

通过命令可以查看集群状态:

redis-cli -p 7001 cluster nodes

image-20210702181922809

4.5.测试

尝试连接7001节点,存储一个数据:

# 连接
redis-cli -p 7001
# 存储数据
set num 123
# 读取数据
get num
# 再次存储
set a 1

结果悲剧了:

image-20210702182343979

集群操作时,需要给redis-cli加上-c参数才可以:

redis-cli -c -p 7001

这次可以了:

image-20210702182602145

个数为1,此时节点总数 ÷ (replicas + 1) 得到的就是master的数量。因此节点列表中的前n个就是master,其它节点都是slave节点,随机分配到不同master

运行后的样子:

[外链图片转存中…(img-HeBHDc8B-1686645543695)]

这里输入yes,则集群开始创建:

[外链图片转存中…(img-q2m1FQv0-1686645543696)]

通过命令可以查看集群状态:

redis-cli -p 7001 cluster nodes

[外链图片转存中…(img-KQhRCURD-1686645543697)]

4.5.测试

尝试连接7001节点,存储一个数据:

# 连接
redis-cli -p 7001
# 存储数据
set num 123
# 读取数据
get num
# 再次存储
set a 1

结果悲剧了:

[外链图片转存中…(img-qL8212LX-1686645543698)]

集群操作时,需要给redis-cli加上-c参数才可以:

redis-cli -c -p 7001

这次可以了:

[外链图片转存中…(img-kpVtriiv-1686645543698)]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/28394.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

java SSM 摄影作品网站myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

一、源码特点 java SSM 摄影作品网站系统是一套完善的web设计系统&#xff08;系统采用SSM框架进行设计开发&#xff0c;springspringMVCmybatis&#xff09;&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代 码和数据库&#xff0c;系统主要采…

计算机网络-网络体系结构

目录 计算机网络的基本概念计算机网络的定义组成与功能计算机网络的分类按照网络的作用范围进行分类按照网络的使用者进行分类 计算机网络主要性能指标 计算机网络体系结构计算机网络协议、接口、服务等概念ISO/OSI 参考模型和 TCP/IP 模型OSI七层模型TCP/IP 模型封装与分用 计…

攻防渗透第四章(谷歌语法)

一、常用谷歌黑客语法 制定网站的URL site: 包含特定字符的URL inurl: 网页标题中包含特定字符 intitle: 正文中指定字符 intext: 指定类型文件 filetype 开发语言判断 site:163.com filetype:php site:163.com filetype:jsp site:163.com filetype:asp site:163.com filetype…

【裸机开发】内核时钟 PLL1 配置实验(一)—— 寄存器分析篇

本章主要会回答以下问题 &#xff1f; imx6u 的时钟源来自于哪 &#xff1f;为什么一个起始时钟源&#xff0c;最终分成了多路&#xff1f;不同的时钟源是如何与外设对应起来的&#xff1f;&#xff08;时钟树&#xff09;要配置内核时钟频率 有哪些步骤 &#xff1f;涉及到哪…

基于Java购物商城系统设计与实现(源码+lw+部署文档+讲解等)

博主介绍&#xff1a; ✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战 ✌ &#x1f345; 文末获取源码联系 &#x1f345; &#x1f447;&#x1f3fb; 精…

今天面了个35k字节跳动出来,真是砂纸擦屁股,给我露了一手...

​2023年春招已经结束&#xff0c;很多小伙伴收获不错&#xff0c;拿到了心仪的 offer。 各大论坛和社区里也看见不少小伙伴慷慨地分享了常见的面试题和八股文&#xff0c;为此咱这里也统一做一次大整理和大归类&#xff0c;这也算是划重点了。 俗话说得好&#xff0c;他山之石…

深入篇【C++】string类的常用接口介绍:标准库中的string类 【万字总结】

深入篇【C】string类的常用接口介绍&#xff1a;标准库中的string类 Ⅰ.string类介绍Ⅱ.string类的常用接口①.string类对象的常用构造1.string()2.string(const char*ch)3.string(const string& str)4.string(size_t n,char c)5.string(const string& str,size_t pos,…

第四章 Linux网络编程 4.1 网络结构模式 4.2MAC地址、IP地址、端口

第四章 Linux网络编程 4.1 网络结构模式 C/S结构 简介 服务器 - 客户机&#xff0c;即 Client - Server&#xff08;C/S&#xff09;结构。C/S 结构通常采取两层结构。服务器负责数据的管理&#xff0c;客户机负责完成与用户的交互任务。客户机是因特网上访问别人信息的机器…

Seata客户端的启动过程 学习记录

Seata客户端的启动过程 1.自动装配4个配置类 将在SpringBoot启动时往容器中添加4个类 1. 自动配置类 SeataAutoConfiguration SeataAutoConfiguration将会往容器中添加两个bean failureHandler 事务处理失败执行器globalTransactionScanner failureHandler failureHandle…

DBA 抓包神器 tshark 测评

想窥探神秘的网络世界的奥秘&#xff0c;tshark 助你一臂之力&#xff01; 作者&#xff1a;赵黎明 爱可生 MySQL DBA 团队成员&#xff0c;熟悉 Oracle、MySQL 等数据库&#xff0c;擅长数据库性能问题诊断、事务与锁问题的分析等&#xff0c;负责处理客户 MySQL 及我司自研 D…

计算机组成原理(六)指令系统

一、指令的基本格式 1.1机器指令的相关概念 指令集(Instruction Set) 某机器所有机器指令的集合 *定长指令集 指令集中的所有指令长度均相同!取指令控制简单*不定长指令集 指令集中的所有指令长度有长、有短 操作码 (1)长度固定 用于指令字长较长的情况RISC 如IBM370操作码8位…

2023 年前端 Web 发展趋势

虽然就个人观点&#xff0c;我觉得 Web 开发在最近几年都没什么进展&#xff08;2016 年至 2021 年&#xff09;&#xff0c;但在刚刚过去的 2022 年中确实又出现了一些新的技术。在本文中&#xff0c;我想跟大家聊聊自己看到的最新 Web 开发的发展趋势。相信这波浪潮会继续激发…

RHCE shell 作业一

1. 设置邮箱 [rootserver ~]# yum install s-nail -y [rootserver ~]# vim /etc/s-nail.rc 编写脚本 [rootserver ~]# vim homework1.sh 设置定时任务 [rootserver ~]# vim /etc/crontab 2. [rootserver ~]# vim homework2.sh 测试&#xff1a; 3. [rootserve…

一文让你了解appium自动化的工作原理

目录 前言&#xff1a; 一、Appium加载的过程图解 二、初步认识appium工作过程 三、bootstrap介绍 四、所使用的技术 五、Capabilities 六、自我理解的工作原理 前言&#xff1a; Appium是一个流行的开源自动化测试框架&#xff0c;支持移动应用程序的自动化测试。 一…

进程管道:父进程和子进程

在接下来的对pipe调用的研究中&#xff0c;我们将学习如何在子进程中运行一个与其父进程完全不同的另外一个程序&#xff0c;而不是仅仅运行一个相同程序。我们用exec调用来完成这一工作。这里的一个难点是&#xff0c;通过exec调用的进程需要知道应该访问哪个文件描述符。在前…

MMPretrain

title: mmpretrain实战 date: 2023-06-07 16:04:01 tags: [image classification,mmlab] mmpretrain实战 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ccTl9bOl-1686129437336)(null)] 主要讲解了安装,还有使用教程.安装教程直接参考官网.下面讲…

pikachu靶场-../../(目录遍历)

目录遍历, 也叫路径遍历, 由于web服务器或者web应用程序对用户输入的文件名称的安全性验证不足而导致的一种安全漏洞&#xff0c;使得攻击者通过利用一些特殊字符就可以绕过服务器的安全限制&#xff0c;访问任意的文件 (可以是web根目录以外的文件&#xff09;&#xff0c;甚至…

pytorch深度学习框架—torch.nn模块(二)

pytorch深度学习框架—torch.nn模块&#xff08;二&#xff09; 激活函数 pytorch中提供了十几种激活函数&#xff0c;常见的激活函数通常为S形激活函数&#xff08;Sigmoid&#xff09;双曲正切激活函数(Tanh) 和线性修正单元&#xff08;ReLu&#xff09;激活函数等 层对应的…

Linux笔记

版本用的是CentOS7最min版 安装JDK&#xff1a;安装上传工具包&#xff1a;自动安装 yum install lrzsz -y 上传本地文件&#xff1a; rz -be 解压jdk&#xff1a; tar -zxvf jdk-8u371-linux-x64.tar.gz -z 用gzip来压缩/解压缩文件&#xff0c;加上该选项后可以将档案…

关于 vue2 后台管理系统构建 vue2+mock.js 的经典案例

一&#xff0c;初识 Mock.js 1.什么是 mock.js: 主要是模拟数据生成器&#xff0c;可以生成随机数据&#xff0c;拦截器 Ajax 请求 2.为什么要使用 mock.js 由于很多学生在学习过程中&#xff0c;后端还没有做好接口&#xff0c;写好接口文档&#xff0c;有了mock.js 前端就…