OFDM——PAPR减小

文章目录

  • 前言
  • 一、PAPR 减小
  • 二、MATLAB 仿真
    • 1、OFDM 信号的 CCDF
      • ①、MATLAB 源码
      • ②、仿真结果
    • 2、单载波基带/通频带信号的 PAPR
      • ①、MATLAB 源码
      • ②、仿真结果
    • 3、时域 OFDM 信号和幅度分布
      • ①、MATLAB 源码
      • ②、仿真结果
    • 4、Chu 序列和 IEEE802.16e 前导的 PAPR
      • ①、MATLAB 源码
      • ②、仿真结果
        • 1) Chu 序列经 IFFT 之后的幅度
        • 2) IEEE 802.16e 前导的 PAPR
    • 5、基于限幅和滤波的 OFDM 信号
      • ①、MATLAB 源码
      • ②、仿真结果
        • 1)基带信号及通频带信号功率谱、PDF、功率
        • 2)限幅信号、滤波信号的 PDF 和功率谱
        • 3)等波纹通频带 FIR 滤波器的特点
    • 6、采用限幅和滤波后的 PAPR 分布和 BER 性能
    • 7、部分传输序列(PTS)
    • 8、DFT 扩频
    • 9、采用脉冲成型的 DFT 扩频的 PAPR 分析
  • 三、资源自取


前言

本文对减小 OFDM 峰值平均功率比(PAPR—Peak to Average Power Ratio)的内容以思维导图的形式呈现,有关仿真部分进行了讲解实现。


一、PAPR 减小

减小 OFDM 峰值平均功率比思维导图如下图所示,如有需求请到文章末尾端自取。
在这里插入图片描述

二、MATLAB 仿真

1、OFDM 信号的 CCDF

互补累积分布函数(CCDF,CF超过Z的概率):
在这里插入图片描述
简化了的 累积分布函数(CDF,CF未超过Z的概率):
在这里插入图片描述
在这里插入图片描述

①、MATLAB 源码

mapper.m

function [modulated_symbols,Mod] = mapper(b,N)
% If N is given, it generates a block of N random 2^b-PSK/QAM modulated symbols.
% Otherwise, it generates a block of 2^b-PSK/QAM modulated symbols for [0:2^b-1].

%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltd

M=2^b; % Modulation order or Alphabet (Symbol) size
if b==1, Mod='BPSK'; A=1; mod_object=comm.PSKModulator('ModulationOrder', M);
 elseif b==2, Mod='QPSK';  A=1;
      mod_object = comm.PSKModulator('ModulationOrder', M, 'PhaseOffset', pi/4);
 else Mod=[num2str(2^b) 'QAM']; Es=1; A=sqrt(3/2/(M-1)*Es); 
      mod_object = comm.RectangularQAMModulator('ModulationOrder', M, 'SymbolMapping', 'Gray');
end
if nargin==2 % generates a block of N random 2^b-PSK/QAM modulated symbols 
  modulated_symbols = A * mod_object(randi([0 M-1], N, 1));
 else
  modulated_symbols = A * mod_object((0:M-1)');
end

PAPR.m

function [PAPR_dB, AvgP_dB, PeakP_dB] = PAPR(x)
% PAPR_dB  : PAPR[dB]
% AvgP_dB  : Average power[dB]
% PeakP_dB : Maximum power[dB]

%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltd

Nx=length(x); xI=real(x); xQ=imag(x);
Power = xI.*xI + xQ.*xQ;
PeakP = max(Power); PeakP_dB = 10*log10(PeakP);
AvgP = sum(Power)/Nx; AvgP_dB = 10*log10(AvgP);
PAPR_dB = 10*log10(PeakP/AvgP);

plot_CCDF.m

% plot_CCDF.m
% Plot the CCDF curves of Fig. 7.3.
clear all; clc; clf
Ns = 2.^[6:10];     % OFDM系统中的子载波数量
b=2;                % 指定每个符号的比特数
M=2^b;              % 根据 b 计算调制阶数
Nblk = 1e3;         % 设置仿真的块数
%mod_object = modem.qammod('M',M, 'SymbolOrder','gray');
%Es=1; A=sqrt(3/2/(M-1)*Es); 
zdBs = [4:0.1:10];
N_zdBs = length(zdBs);
%Ray_fnc = inline('z/s2*exp(-z^2/(2*s2))','s2','z');
CCDF_formula=inline('1-((1-exp(-z.^2/(2*s2))).^N)','N','s2','z'); % Eq.(7.9)    % 代码使用内联函数 inline 定义了函数 CCDF_formula
for n = 1:length(Ns)    % 循环遍历 Ns 中的值
    N=Ns(n);            % 设置当前的子载波数量
    x = zeros(Nblk,N);  % 初始化一个数组 x,用于存储OFDM时域信号
    sqN=sqrt(N);        % 计算 N 的平方根
    for k = 1:Nblk      % 进行 OFDM 块的仿真
       %msgint=randint(1,N,M); X=A*modulate(mod_object,msgint);
       X = mapper(b,N); % 使用 QPSK 调制方案生成 N 个调制符号
       x(k,:) = ifft(X,N)*sqN;  % 对 X 执行逆快速傅里叶变换(IFFT),并乘以 sqN 进行能量归一化
       CFx(k) = PAPR(x(k,:));   % 计算时域信号 x 的峰均比(PAPR)
    end
    s2 = mean(mean(abs(x)))^2/(pi/2);   % 计算时域信号 x 的平均功率以估计方差 s2。
    %  使用 CCDF_formula 函数和 PAPR 值计算理论和仿真的 CCDF 值
    CCDF_theoretical=CCDF_formula(N,s2,10.^(zdBs/20));  % 使用公式 Eq.(7.9) 中指定的参数 N、s2 和 zdBs 计算理论 CCDF
    for i = 1:N_zdBs
       %zdB=zdBs(i); %z=10^(zdB/20); %CCDF_theoretical(i)=CCDF_formula(N,s2,z);
       CCDF_simulated(i) = sum(CFx>zdBs(i))/Nblk;   % 通过计数大于阈值 zdBs(i) 的 PAPR 值的数量并将其除以总块数 Nblk,估计仿真的 CCDF
    end
    semilogy(zdBs,CCDF_theoretical,'k-');  hold on; grid on;    % 使用对数坐标绘制理论 CCDF 曲线
    semilogy(zdBs(1:3:end),CCDF_simulated(1:3:end),'k:*');      % 使用对数坐标绘制仿真 CCDF 曲线
end
axis([zdBs([1 end]) 1e-2 1]); 
title('OFDM system with N-point FFT');
xlabel('PAPR0[dB]');
ylabel('CCDF=Probability(PAPR>PAPR0)'); 
legend('Theoretical','Simulated');

②、仿真结果

请添加图片描述
上图显示了当 N = 64,128,256,512,1024 时,OFDM 信号的理论 CCDF 和仿真 CCDF,当 N 变小时,仿真结果偏离理论值,这说明只有 N 足够大时,式(7.11)才是精确的。

2、单载波基带/通频带信号的 PAPR

①、MATLAB 源码

mapper.m

function [modulated_symbols,Mod] = mapper(b,N)
% If N is given, it generates a block of N random 2^b-PSK/QAM modulated symbols.
% Otherwise, it generates a block of 2^b-PSK/QAM modulated symbols for [0:2^b-1].

%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltd

M=2^b; % Modulation order or Alphabet (Symbol) size
if b==1, Mod='BPSK'; A=1; mod_object=comm.PSKModulator('ModulationOrder', M);
 elseif b==2, Mod='QPSK';  A=1;
      mod_object = comm.PSKModulator('ModulationOrder', M, 'PhaseOffset', pi/4);
 else Mod=[num2str(2^b) 'QAM']; Es=1; A=sqrt(3/2/(M-1)*Es); 
      mod_object = comm.RectangularQAMModulator('ModulationOrder', M, 'SymbolMapping', 'Gray');
end
if nargin==2 % generates a block of N random 2^b-PSK/QAM modulated symbols 
  modulated_symbols = A * mod_object(randi([0 M-1], N, 1));
 else
  modulated_symbols = A * mod_object((0:M-1)');
end

modulation.m

function [s,time] = modulation(x,Ts,Nos,Fc)
% Ts : Sampling period
% Nos: Oversampling factor
% Fc : Carrier frequency
Nx=length(x);  offset = 0; 
if nargin<5
    scale = 1; 
    T=Ts/Nos; % Scale and Oversampling period for Baseband
else
    scale = sqrt(2);
    T=1/Fc/2/Nos; % Scale and Oversampling period for Passband
end
t_Ts = [0:T:Ts-T]; 
time = [0:T:Nx*Ts-T]; % One sampling interval and whole interval
tmp = 2*pi*Fc*t_Ts+offset; 
len_Ts=length(t_Ts); 
cos_wct = cos(tmp)*scale;  
sin_wct = sin(tmp)*scale;
%s = zeros(N*len_Ts,1);
for n = 1:Nx
   s((n-1)*len_Ts+1:n*len_Ts) = real(x(n))*cos_wct-imag(x(n))*sin_wct;
end

PAPR.m

function [PAPR_dB, AvgP_dB, PeakP_dB] = PAPR(x)
% PAPR_dB  : PAPR[dB]
% AvgP_dB  : Average power[dB]
% PeakP_dB : Maximum power[dB]

%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltd

Nx=length(x); xI=real(x); xQ=imag(x);
Power = xI.*xI + xQ.*xQ;
PeakP = max(Power); PeakP_dB = 10*log10(PeakP);
AvgP = sum(Power)/Nx; AvgP_dB = 10*log10(AvgP);
PAPR_dB = 10*log10(PeakP/AvgP);

single_carrier_PAPR.m

%%%%%%%%%%%%%%%%%%%%%  计算单载波基带/通频带信号的PAPR   %%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%   single_carrier_PAPR.m    %%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%程序说明
%%%%分析单载波下的PAPR,可画出图

%%%%%%    仿真环境
%软件版本:MATLAB R2019a

clear
Ts = 1;     % 采样时间间隔
L = 8;      % 每个符号的采样点数
Nos = 8;    % 过采样因子

Fc = 1;     % 载波频率
b = 2;      % 比特数
M = 2^b;    % 调制方案中的符号数
[X,Mod] = mapper(b);    % 返回一个长度为 M 的复数向量 X,表示调制方案的符号集合;Mod 表示调制方案的名称
L_ = L*4;
i_b = 1;
[xt_pass_,time_] = modulation(X,Ts,L_,Fc);      % 执行连续时间调制
[xt_pass,time] = modulation(X,Ts,L,Fc);         % 执行过采样调制:

for i_s = 1:M
     xt_base(L*(i_s-1)+1 : L*i_s) = X(i_s)*ones(1,L);   % 生成基带信号
end
PAPR_dB_base = PAPR(xt_base);   % 计算基带信号的 PAPR
figure(1);  
% clf;
subplot(311);
stem(time,real(xt_base),'k.');  % 绘制离散时间信号的实部
hold on;  
ylabel('S_{I}(n)');
%title([Mod ', ' num2str(M) ' symbols, Ts=' num2str(Ts) 's, Fs=' num2str(1/Ts*2*Nos) 'Hz, Nos=' num2str(Nos) ', baseband, g(n)=u(n)-u(n-Ts)']);
subplot(312);
stem(time,imag(xt_base),'k.');  % 绘制离散时间信号的虚部
hold on; 
ylabel('S_{Q}(n)');
subplot(313);
stem(time,abs(xt_base).^2,'k.');    % 绘制离散时间信号的幅度平方
hold on;
title(['PAPR = ' num2str(round(PAPR_dB_base(i_b)*100)/100) 'dB']);
xlabel ('samples'); 
ylabel('|S_{I}(n)|^{2}+|S_{Q}(n)|^{2}');    
figure(2);
clf;   
PAPR_dB_pass(i_b) = PAPR(xt_pass);
subplot(211);
stem(time,xt_pass,'k.'); 
hold on; 
plot(time_,xt_pass_,'k:');
title([Mod ', ' num2str(M) ' symbols, Ts=' num2str(Ts) 's, Fs=' num2str(1/Ts*2*Nos) 'Hz, Nos=' num2str(Nos) ', Fc=' num2str(Fc) 'Hz, g(n)=u(n)-u(n-Ts)']);
ylabel('S(n)');
subplot(212)
stem(time,xt_pass.*xt_pass,'r.'); 
hold on;
plot(time_,xt_pass_.*xt_pass_,'k:');
title(['PAPR = ' num2str(round(PAPR_dB_pass(i_b)*100)/100) 'dB']);
xlabel('samples');
ylabel('|S(n)|^{2}');    
%bb_I = zeros(1,M*Nos*2); bb_Q = zeros(1,M*Nos*2);
disp('PAPRs of baseband/passband signals'); 
PAPRs_of_baseband_passband_signals=[PAPR_dB_base; PAPR_dB_pass]

②、仿真结果

在这里插入图片描述
基带信号的平均功率和峰值功率相同,因此它的 PAPR 是 0dB
在这里插入图片描述
通频带信号的 PAPR 是 3.01dB

注意:单载波信号的 PAPR 随载波频率 f c f_c fc 的变化而变化,因此,为了准确测量单载波系统的 PAPR,必须考虑通频带信号的载波频率。总之,单载波系统的 PAPR 可以由调制方案直接预测,而且不会很大,这与 OFDM 系统不同。

3、时域 OFDM 信号和幅度分布

①、MATLAB 源码

% OFDM_signal.m

%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltd

clear all; clc; clf;

N=8;                % 子载波数量
b=2;                % 每个子载波的比特数
M=2^b;              % 每个子载波的调制阶数 
Nos=16;             % 每个OFDM符号中的子载波数量 
NNos=N*Nos;         % 总的子载波数量 
T=1/NNos;           % 每个OFDM符号的持续时间 
time = [0:T:1-T];   % 时间序列,从0到1,步长为T   

[X,Mod] = mapper(b,N);      % 返回已调制符号X和调制方式Mod
X(1)=0+1i*0; % A block of 16 QPSK symbols with no DC-subcarrier 
% 使用ifft函数生成OFDM符号x。根据子载波的索引i,分为两个分支,分别对应于前N/2个子载波和后N/2个子载波。根据索引i和NNos的值,使用ifft函数生成不同的输入序列x。
for i = 1:N
   if i<=N/2,  x = ifft([zeros(1,i-1) X(i) zeros(1,NNos-i+1)],NNos);
   else  x = ifft([zeros(1,NNos-N+i-1) X(i) zeros(1,N-i)],NNos);
   end
   xI(i,:) = real(x); xQ(i,:) = imag(x);
end
sum_xI = sum(xI); sum_xQ = sum(xQ);
figure(1), clf, subplot(311)
plot(time,xI,'k:','linewidth',1),hold on, plot(time,sum_xI,'b','linewidth',2)
title([Mod ', N=' num2str(N)]); ylabel('x_{I}(t)'); axis([0 1 min(sum_xI) max(sum_xI)]);
subplot(312)
plot(time,xQ,'k:','linewidth',1); hold on, plot(time,sum_xQ,'b','linewidth',2)
ylabel('x_{Q}(t)'); axis([0 1 min(sum_xQ) max(sum_xQ)]);
subplot(313), plot(time,abs(sum_xI+j*sum_xQ),'b','linewidth',2); hold on;
ylabel('|x(t)|'); xlabel('t');
clear('xI'), clear('xQ')
N=2^4;  NNos=N*Nos; T=1/NNos; time=[0:T:1-T]; 
Nhist=1e3;      % 历史记录数
for k = 1:Nhist
   [X,Mod] = mapper(b,N); X(1)=0+j*0; % A block of 16 QPSK symbols with no DC-subcarrier 
   for i = 1:N
      if (i<= N/2)  x = ifft([zeros(1,i-1) X(i) zeros(1,NNos-i+1)],NNos);
       else  x = ifft([zeros(1,NNos-N/2+i-N/2-1) X(i) zeros(1,N-i)],NNos);
      end
      xI(i,:) = real(x); xQ(i,:) = imag(x);
   end
   HistI(NNos*(k-1)+1:NNos*k) = sum(xI); HistQ(NNos*(k-1)+1:NNos*k) = sum(xQ);  % 将xI和xQ的总和保存在矩阵HistI和HistQ中
end
N_bin = 30;
figure(2), clf, subplot(311)
[xI_dist,bins] = hist(HistI,N_bin);   bar(bins,xI_dist/sum(xI_dist),'k'); %#ok<HIST>
title([Mod ', N=' num2str(N)]);  ylabel('pdf of x_{I}(t)');
subplot(312)
[xQ_dist,bins] = hist(HistQ,N_bin);  bar(bins,xQ_dist/sum(xQ_dist),'k');
ylabel('pdf of x_{Q}(t)');
subplot(313)
[xabs_dist,bins] = hist(abs(HistI+j*HistI),N_bin);  bar(bins,xabs_dist/sum(xabs_dist),'k');
ylabel('pdf of |x(t)|');  xlabel('x_{0}');

②、仿真结果

在这里插入图片描述
总的来说,当 N N N 增大时,PAPR 变得更加明显

在这里插入图片描述
从图中可以看出, x [ n ] x[n] x[n] 的实部和虚部服从高斯分布,而 ∣ x [ n ] ∣ |x[n]| x[n] ∣ x [ t ] ∣ |x[t]| x[t] 服从瑞利分布

对于具有 N 个子载波的OFDM符号,当每个子载波分量具有相同的相位,且恰好出现最大幅度时, OFDM 信号具有最大功率。最大功率随着 N 的增大而增大,而且出现最大功率的概率随着 N 的增大而降低。

4、Chu 序列和 IEEE802.16e 前导的 PAPR

①、MATLAB 源码

PAPR_of_Chu.m

% PAPR_of_Chu.m
% Plot Fig. 7.10(a)

%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltd

clear, clf
N=16; L=4; i=[0:N-1]; 
k = 3; X = exp(j*k*pi/N*(i.*i));
[x,time] = IFFT_oversampling(X,N);
PAPRdB = PAPR(x);
[x_os,time_os] = IFFT_oversampling(X,N,L); %x_os=x_os*L;
PAPRdB_os = PAPR(x_os);
subplot(221), plot(x,'o');
hold on, plot(x_os,'k*');
legend('L=1','L=4');
axis([-0.4 0.4 -0.4 0.4]), axis('equal');
plot(0.25*exp(j*pi/180*[0:359])); % circle with radius 0.25
subplot(222), plot(time,abs(x),'o', time_os,abs(x_os),'k:*');
xlabel('时间(由符号间隔归一化)');
ylabel('|IFFT(u1(k))|');
title('IFFT(X1(k)),k=3,N=16,L=1,4');
legend('L=1','L=4');
PAPRdB_without_and_with_oversampling=[PAPRdB  PAPRdB_os];

PAPR_of_preamble.m

% PAPR_of_preamble.m
% Plot Fig. 7.10(b) (the PAPR of IEEE802.16e preamble)

%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltd

clear, clf
N=1024; L=4; Npreamble=114; n=0:Npreamble-1; % Mod='BPSK'; 
%PAPR = zeros(N_preamble,1); PAPR_os = zeros(N_preamble,1);
for i = 1:Npreamble
   X=load(['D:\Work\MIMO-OFDM无线通信技术及MATLAB实现\MIMO_OFDM-master\第7章 PAPR\Chu序列和IEEE802.16e前导的PAPR\Wibro-Preamble\Preamble_sym' num2str(i-1) '.dat']);
   X = X(:,1); X = sign(X); X = fftshift(X);
   x = IFFT_oversampling(X,N); PAPRdB(i) = PAPR(x);
   x_os = IFFT_oversampling(X,N,L); PAPRdB_os(i) = PAPR(x_os);
end
plot(n,PAPRdB,'-o', n,PAPRdB_os,':*'), 
xlabel('前导编码[0~113]');
ylabel('|IFFT(X1(k))|');
title('IEEE 802.16e前导,L=1,4');
legend('L=1','L=4');

②、仿真结果

1) Chu 序列经 IFFT 之后的幅度

请添加图片描述
请添加图片描述
该图显示了在没有采样和 L=4 过采样的情况下,Chu 序列经过 16 点 IFFT 之后的幅度,有过采样和没有过采样的 PAPR 分别为 0dB 和 4.27dB,这说明不同的采样速度会导致 PAPR 具有明显的差异

2) IEEE 802.16e 前导的 PAPR

请添加图片描述
该图显示了 IEEE802.16e 标准中定义的 114 个前导的 PAPR,有过采样的PAPR比没有过采样的 PAPR 大 0.4dB 左右。事实上,由于前导码存在放大功率的问题,因此最初设计的这些前导码具有低的 PAPR。这就是为什么不同的采样速率并没有使这些序列的 PAPR 明显不同。然而,对于 Chu 序列,采样速率的不同通常导致 PAPR 的明显变化。因此,为了在基带对 PAPR 进行精确的测量,需要过采样过程。

5、基于限幅和滤波的 OFDM 信号

①、MATLAB 源码

mapper.m

function [modulated_symbols,Mod] = mapper(b,N)
% If N is given, it generates a block of N random 2^b-PSK/QAM modulated symbols.
% Otherwise, it generates a block of 2^b-PSK/QAM modulated symbols for [0:2^b-1].

%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltd

M=2^b; % Modulation order or Alphabet (Symbol) size
if b==1, Mod='BPSK'; A=1; mod_object=comm.PSKModulator('ModulationOrder', M);
 elseif b==2, Mod='QPSK';  A=1;
      mod_object = comm.PSKModulator('ModulationOrder', M, 'PhaseOffset', pi/4);
 else Mod=[num2str(2^b) 'QAM']; Es=1; A=sqrt(3/2/(M-1)*Es); 
      mod_object = comm.RectangularQAMModulator('ModulationOrder', M, 'SymbolMapping', 'Gray');
end
if nargin==2 % generates a block of N random 2^b-PSK/QAM modulated symbols 
  modulated_symbols = A * mod_object(randi([0 M-1], N, 1));
 else
  modulated_symbols = A * mod_object((0:M-1)');
end

IFFT_oversampling.m

function [xt, time] = IFFT_oversampling(X,N,L)

%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltd

if nargin<3,  L=1;  end
NL=N*L; T=1/NL; time = [0:T:1-T];  X = X(:).';
xt = L*ifft([X(1:N/2)  zeros(1,NL-N)  X(N/2+1:end)], NL);

add_CP.m

function y=add_CP(x,Ncp)
% Add cyclic prefix

%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltd

y = [x(:,end-Ncp+1:end) x];     % CP 循环前缀

clipping.m

function [x_clipped,sigma]=clipping(x,CL,sigma)
% CL   : Clipping Level
% sigma: sqrt(variance of x)

%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltd

if nargin<3
  x_mean=mean(x); x_dev=x-x_mean; sigma=sqrt(x_dev*x_dev'/length(x));   % 计算标准差
end
CL = CL*sigma;  % 限幅比 = 输入限幅比 × 标准差
x_clipped = x;  
ind = find(abs(x)>CL); % Indices to clip    % 找到大于限幅比的索引
x_clipped(ind) = x(ind)./abs(x(ind))*CL;    % 进行限幅

在这里插入图片描述

PDF_of_clipped_and_filtered_OFDM_signal.m

% PDF_of_clipped_and_filtered_OFDM_signal.m
% Plot Figs. 7.14 and 7.15

%MIMO-OFDM Wireless Communications with MATLAB㈢   Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
%2010 John Wiley & Sons (Asia) Pte Ltd

clear
CR = 1.2;       % 限幅比
b=2;            % 每一QPSK符号的比特数
N=128;          % FFT大小 
Ncp=32;         % CP大小 
fs=1e6;         % 采样频率 
L=8;            % 过采样因子 
Tsym=1/(fs/N);  % 符号周期。它是指每个OFDM符号的持续时间。    Tsym = 1.28e-4
Ts=1/(fs*L);    % 采样周期                                    Ts = 1.25e-7
fc=2e6; wc=2*pi*fc;         % 载波频率                        wc = 1.2566e+7
t=[0:Ts:2*Tsym-Ts]/Tsym;    % 时间向量                        t = [0:9.7656e-4:1.999]_{2048}
t0=t((N/2-Ncp)*L);                                          % t0 = t((64-32)*8) = 0.249
f=[0:fs/(N*2):L*fs-fs/(N*2)]-L*fs/2;    % -L*fs/2 ~ L*fs/2 的频率向量  [-4e+6, 3.9961e+6]_{2048}
Fs=8;           % 滤波器的采样频率   8 MHz
Norder=104;     % 滤波器的阶数
dens=20;        % 滤波器的密度因子    大于16即可
FF=[0 1.4 1.5 2.5 2.6 Fs/2]; % 阻带/通带/阻带频率边缘向量  [0 Fstop1 Fpass1 Fpass2 Fstop2 Fs/2]
WW=[10 1 10];                % 阻带/通带/阻带加权向量   阻带中的纹波比通带中的纹波小10倍
h = firpm(Norder,FF/(Fs/2),[0 0 1 1 0 0],WW,{dens}); % BPF 系数
X = mapper(b,N);  X(1) = 0; % QPSK 调制 
x=IFFT_oversampling(X,N,L); % IFFT 和过采样       x = 8*[x(1:64), (0...0)_{1024-128}, x(65:128)]_{1024}
x_b=add_CP(x,Ncp*L); % 加 CP   x_b = [(CP)_{256}, x]_{1280}
x_b_os=[zeros(1,(N/2-Ncp)*L), x_b, zeros(1,N*L/2)]; % 多采样   x_b_os = [(0)_{256}, (x_b)_{1280}, (0)_{512}]_{2048}
x_p = sqrt(2)*real(x_b_os.*exp(j*2*wc*t)); % 从基带到通频带
x_p_c = clipping(x_p,CR); % Eq.(7.18) 限幅公式
X_p_c_f= fft(filter(h,1,x_p_c)); % norm(X_p_c_f-X_p_c_f1)
x_p_c_f = ifft(X_p_c_f);
x_b_c_f = sqrt(2)*x_p_c_f.*exp(-j*2*wc*t); % 从通频带到基带

figure(1); clf % Fig. 7.15(a), (b)
nn=(N/2-Ncp)*L+[1:N*L]; nn1=N/2*L+[-Ncp*L+1:0]; nn2=N/2*L+[0:N*L];  % nn =[257:1280]_{1024}   nn1 = [257:512]_{256}  nn2=[512:1536]_{1025}
subplot(221)
plot(t(nn1)-t0, abs(x_b_os(nn1)),'k:'); hold on;    % 循环前缀 
plot(t(nn2)-t0, abs(x_b_os(nn2)),'k-');             % 基带信号 + 512个0
axis([t([nn1(1) nn2(end)])-t0  0  max(abs(x_b_os))]);
title(['Baseband signal, with CP']);
xlabel('t (normalized by symbol duration)'); ylabel('abs(x''[m])');
subplot(223)
XdB_p_os = 20*log10(abs(fft(x_b_os)));
plot(f,fftshift(XdB_p_os)-max(XdB_p_os),'k');
xlabel('frequency[Hz]'); ylabel('PSD[dB]'); axis([f([1 end]) -100 0]);
subplot(222)
[pdf_x_p,bin]=hist(x_p(nn),50); bar(bin,pdf_x_p/sum(pdf_x_p),'k');
xlabel('x'); ylabel('pdf'); title(['Unclipped passband signal']);
subplot(224)
XdB_p = 20*log10(abs(fft(x_p)));
plot(f,fftshift(XdB_p)-max(XdB_p),'k');
xlabel('frequency[Hz]'); ylabel('PSD[dB]'); axis([f([1 end]) -100 0]);

figure(2); clf % Fig. 7.15(c), (d)
subplot(221)
[pdf_x_p_c,bin] = hist(x_p_c(nn),50);   % 限幅后的通频带信号
bar(bin,pdf_x_p_c/sum(pdf_x_p_c),'k');
title(['Clipped passband signal, CR=' num2str(CR)]);
xlabel('x'); ylabel('pdf');
subplot(223)
XdB_p_c = 20*log10(abs(fft(x_p_c)));    % 限幅后的通频带信号功率
plot(f,fftshift(XdB_p_c)-max(XdB_p_c),'k');
xlabel('frequency[Hz]'); ylabel('PSD[dB]'); axis([f([1 end]) -100 0]);
subplot(222)
[pdf_x_p_c_f,bin] = hist(x_p_c_f(nn),50); 
bar(bin,pdf_x_p_c_f/sum(pdf_x_p_c_f),'k');
title(['Passband signal after clipping and filtering, CR=' num2str(CR)]);
xlabel('x'); ylabel('pdf');
subplot(224)
XdB_p_c_f = 20*log10(abs(X_p_c_f));
plot(f,fftshift(XdB_p_c_f)-max(XdB_p_c_f),'k');  % 限幅后的基带信号功率
xlabel('frequency[Hz]'); ylabel('PSD[dB]');
axis([f([1 end]) -100 0]);

figure(3); clf % Fig. 7.14
subplot(221)
stem(h,'k'); xlabel('tap'); ylabel('Filter coefficient h[n]');  % 滤波器抽头和系数
axis([1, length(h), min(h), max(h)]);
subplot(222)
HdB = 20*log10(abs(fft(h,length(X_p_c_f))));    % 通频带限幅滤波后经过 FFT 的信号再经过 FFT 后的功率
plot(f,fftshift(HdB),'k');
xlabel('frequency[Hz]'); ylabel('Filter freq response H[dB]');
axis([f([1 end]) -100 0]);
subplot(223)
[pdf_x_p_c_f,bin] = hist(abs(x_b_c_f(nn)),50);  % 限幅滤波后基带信号
bar(bin,pdf_x_p_c_f/sum(pdf_x_p_c_f),'k');
title(['Baseband signal after clipping and filtering, CR=' num2str(CR)]);
xlabel('|x|'); ylabel('pdf');
subplot(224)
XdB_b_c_f = 20*log10(abs(fft(x_b_c_f)));        % 限幅滤波后基带信号功率
plot(f,fftshift(XdB_b_c_f)-max(XdB_b_c_f),'k');
xlabel('frequency[Hz]'); ylabel('PSD[dB]'); axis([f([1 end]) -100 0]);

②、仿真结果

1)基带信号及通频带信号功率谱、PDF、功率

在这里插入图片描述

2)限幅信号、滤波信号的 PDF 和功率谱

在这里插入图片描述
可以看到限幅后的信号幅度低于限幅电平,也可以看到限幅后的带外频谱增大了,但滤波后的带外频谱减小了

3)等波纹通频带 FIR 滤波器的特点

在这里插入图片描述

6、采用限幅和滤波后的 PAPR 分布和 BER 性能

在这里插入图片描述
因为 CF 是 PAPR 的平方根,所以 CF 的 CCDF 可以看做 PAPR 的分布,从(a)图中可以看出,OFDM 信号的 PAPR 在限幅后显著降低,而在滤波后有所上升。CR 越小,PAPR 降低得越多。(b)图显示了使用限幅和滤波技术的 BER 性能,图中 “C” 表示只有限幅的情况,“C&F” 表示限幅和滤波都有的情况,从(b)可以看出,当 CR 减小时,BER 性能变差。

7、部分传输序列(PTS)

参考我之前的博客:减小PAPR——PTS技术

8、DFT 扩频

参考我之前的博客:减小PAPR——DFT扩频

9、采用脉冲成型的 DFT 扩频的 PAPR 分析

在这里插入图片描述
在这里插入图片描述
从上面仿真图可以看出,当滚降系数 a 从 0 变到 1 时 IFDMA 的 PAPR 性能显著提升,而 LFDMA 受脉冲成形的影响没有那么大。由于滚降系数增大时剩余带宽增加,IFDMA 可以在剩余带宽和 PAPR 性能之间进行折中
在这里插入图片描述
从上面仿真图可以看出,滚降系数 a=0.4 的 LFDMA 中的 DFT 扩频技术的 PAPR 性能随着 M 的增大而降低。

源码下载地址:采用脉冲成型的 DFT 扩频的 PAPR 分析

三、资源自取

OFDM PAPR减小思维导图

在这里插入图片描述


我的qq:2442391036,欢迎交流!


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/283015.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

模型 KANO卡诺模型

本系列文章 主要是 分享 思维模型&#xff0c;涉及各个领域&#xff0c;重在提升认知。需求分析。 1 卡诺模型的应用 1.1 餐厅需求分析故事 假设你经营一家餐厅&#xff0c;你想了解客户对你的服务质量的满意度。你可以使用卡诺模型来收集客户的反馈&#xff0c;并分析客户的…

MySQL的日志管理以及备份和恢复

MySQL日志管理 mysql的日志默认保存位置为/usr/local/mysql/data vim /etc/my.cnf #开启二进制日志功能 vim /etc/my.cnf [mysqld]##错误日志&#xff0c;用来记录当MySQL启动、停止或运行时发生的错误信息&#xff0c;默认已开启 log-error/usr/local/mysql/data/mysql_…

Python从入门到网络爬虫、自动化

可以创建C、C#、Python、Golang、Java、React、Node、Vue、PHP项目 创建Java项目 创建Python项目 简单if……else……语句 # 简单的if……else……语句 state True if state:print("状态正常") else:print("状态异常")# 复杂的if……elif……语句 score …

基于 LangChain + GLM搭建知识本地库

一种利用 langchain 思想实现的基于本地知识库的问答应用&#xff0c;目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。 受GanymedeNil的项目document.ai和AlexZhangji创建的ChatGLM-6B Pull Request启发&#xff0c;建立了全流程可使用开源模…

【Linux C | 文件I/O】文件数据的同步 | sysc、fsync 和 fdatasync 函数

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…

电压,电流,温度采样检测原理

电流采集电路&#xff1a; 电流采样原理&#xff1a; 电压采样电路&#xff1a; 温度检测&#xff1a;通过热敏电阻实现 以上资料来源于&#xff1a;正点原子&#xff0c;仅做学习笔记使用

20231231_小米音箱接入GPT

参考资料&#xff1a; GitHub - yihong0618/xiaogpt: Play ChatGPT and other LLM with Xiaomi AI Speaker *.设置运行脚本权限 Set-ExecutionPolicy -ExecutionPolicy RemoteSigned *.配置小米音箱 ()pip install miservice_fork -i https://pypi.tuna.tsinghua.edu.cn/sim…

2013年AMC8数学竞赛中英文真题典型考题、考点分析和答案解析

“一元复始&#xff0c;万象更新。行而不辍&#xff0c;未来可期。” 努力学习和奋斗的时光总是过得飞快&#xff0c;不知不觉&#xff0c;2024年已经悄然而至&#xff0c;今天是2024年1月1日&#xff0c;六分成长祝所有的读者朋友和孩子们新年快乐&#xff01;学习进步&#…

Django 学习教程- Django 入门案例

Django学习教程系列 Django学习教程-介绍与安装 前言 本教程是为 Django 5.0 编写的&#xff0c;它支持 Python 3.10 至以上。如果 Django 版本不匹配&#xff0c;可以参考教程 使用右下角的版本切换器来获取你的 Django 版本 &#xff0c;或将 Django 更新到最新版本。如果…

uni-app js语法

锋哥原创的uni-app视频教程&#xff1a; 2023版uniapp从入门到上天视频教程(Java后端无废话版)&#xff0c;火爆更新中..._哔哩哔哩_bilibili2023版uniapp从入门到上天视频教程(Java后端无废话版)&#xff0c;火爆更新中...共计23条视频&#xff0c;包括&#xff1a;第1讲 uni…

1.项目简介

本次项目建立的基础是基于Django后台admin管理功能上的二次加工以符合实际情况&#xff0c;所以需要读者对Django这个架构有一定的了解&#xff0c;具体可以查看作者的另一个专栏Django详解。 随着信息技术的迅猛发展&#xff0c;图书馆的借阅系统也在不断地进行更新和改进。传…

Element|InfiniteScroll 无限滚动组件的具体使用方法

目录 InfiniteScroll 无限滚动 基本用法 详细说明 v-infinite-scroll 指令 infinite-scroll-disabled 属性 infinite-scroll-distance 属性 总结 需求背景 &#xff1a; 项目统计管理列表页面&#xff0c;数据量过多时在 IE 浏览器上面会加载异常缓慢&#xff0c;导致刚…

「实验记录」CS144 Lab1 StreamReassembler

目录 一、Motivation二、SolutionsS1 - StreamReassembler的对外接口S2 - push_substring序列写入ByteStream 三、Result四、My Code五、Reference 一、Motivation 我们都知道 TCP 是基于字节流的传输方式&#xff0c;即 Receiver 收到的数据应该和 Sender 发送的数据是一样的…

jmeter的常用功能及在测试中的基本使用和压测实战

Jmeter基础功能 了解Jmeter的常用组件 元件&#xff1a;多个类似功能组件的容器&#xff08;类似于类&#xff09; 一&#xff1a;Test Plan&#xff08;测试计划&#xff09; 测试计划通常用来给测试的项目重命名&#xff0c;使用多线程脚本运行时还可以配置线程组运行方式…

无监督学习(下)

1.高斯混合模型(GMM) (1)简单概念 高斯混合模型是一种概率模型&#xff0c;它假定实例是由多个参数未知的高斯分布的混合生成的。从单个高斯分布生成的所有实例都形成一个集群&#xff0c;通常看起来像一个椭圆。每个集群都可以由不同的椭圆形状&#xff0c;大小&#xff0c;密…

C# 给方形图片切圆角

写在前面 在有些场景中&#xff0c;给图片加上圆角处理会让视觉效果更美观。 代码实现 /// <summary>/// 将图片处理为圆角/// </summary>/// <param name"image"></param>/// <returns></returns>private Image DrawTranspar…

C语言-环境搭建

文章目录 内容Notepad的安装gcc编译工具的配置 编写软件的安装&#xff1a;软件传送门&#xff1a;Notepad软件选择一个合适的路径&#xff0c;一键傻瓜式安装即可 编译工具gcc在windows环境下的配置&#xff1a;解压gcc编辑工具包解压出来的mingw64文件放到一个合适的磁盘路径…

探索工业智能检测,基于轻量级YOLOv8开发构建焊接缺陷检测识别系统

焊接缺陷相关的开发实践在前面的博文中已经有所涉及了&#xff0c;感兴趣的话可以自行移步阅读即可&#xff1a;《探索工业智能检测&#xff0c;基于轻量级YOLOv5s开发构建焊接缺陷检测识别系统》 将智能模型应用和工业等领域结合起来是有不错市场前景的&#xff0c;比如&…

Java中实现百度浏览器搜索功能(windows/linux)

要在Java中实现百度浏览器搜索功能&#xff0c;你可以使用Selenium WebDriver。Selenium是一个用于自动化浏览器的工具&#xff0c;WebDriver是Selenium的一个子项目&#xff0c;它提供了一套API&#xff0c;可以直接与浏览器交互。 依赖: <dependencies><dependency…

WorkPlus:领先的IM即时通讯软件,打造高效沟通协作新时代

在当今快节奏的商业环境中&#xff0c;高效沟通和协作是企业成功的关键。而IM即时通讯软件作为实现高效沟通的利器&#xff0c;成为了现代企业不可或缺的一部分。作为一款领先的IM即时通讯软件&#xff0c;WorkPlus以其卓越的性能和独特的功能&#xff0c;助力企业打造高效沟通…