模型量化之AWQ和GPTQ

什么是模型量化

模型量化(Model Quantization)是一种通过减少模型参数表示的位数来降低模型计算和存储开销的技术。一般来说,模型参数在深度学习模型中以浮点数(例如32位浮点数)的形式存储,而模型量化可以将这些参数转换为较低位宽的整数或定点数。这有几个主要的作用:

减小模型大小: 通过减少每个参数的位数,模型占用的存储空间变得更小。这对于在移动设备、嵌入式系统或者边缘设备上部署模型时尤其有用,因为这些设备的存储资源通常有限。

加速推理: 量化可以降低模型推理时的计算开销。使用较低位宽的整数或定点数进行计算通常比使用浮点数更高效,因为它可以减少内存带宽需求,提高硬件的并行计算能力。这对于实时推理和响应时间敏感的应用程序非常重要。

减少功耗: 量化可以降低模型在部署环境中的能耗,因为计算和存储操作通常是耗电的。通过减少模型参数的位数,可以减少在部署设备上执行推理时的功耗。

提高模型在资源受限环境中的可用性: 在一些场景中,设备的存储和计算资源可能非常有限,例如在边缘设备或物联网设备上。模型量化使得在这些资源受限的环境中部署深度学习模型更加可行。

总体而言,模型量化是一种权衡计算、存储和功耗的技术,可以使得深度学习模型更适应于各种不同的部署场景。

常用的模型量化技术

Round nearest quantization:(最近整数量化)

是一种常见的模型量化技术,它用于将浮点数参数量化为整数或定点数。在这种量化中,每个浮点数参数被四舍五入到最接近的整数或定点数。这种方法旨在保留尽可能多的信息,同时将参数映射到有限的整数或定点值上。

AWQ(Activation-aware Weight Quantization)-激活感知权重量化:

激活感知权重量化(AWQ),一种面向LLM低比特权重量化的硬件友好方法。我们的方法基于这样一个观察:权重并非同等重要,仅保护1%的显著权重可以大大减少量化误差。然后,我们建议通过观察激活而不是权重来搜索保护显著权重的最佳通道缩放。AWQ不依赖于任何反向传播或重构,因此可以很好地保留LLMs在不同领域和模态中的泛化能力,而不会过度拟合校准集。AWQ在各种语言建模和特定领域基准上优于现有工作。由于更好的泛化能力,它在面向指令调整的LMs上实现了出色的量化性能,并且首次在多模态LMs上取得了成功,论文地址。

GPTQ:Generative Pretrained Transformer Quantization

GPTQ 的思想最初来源于 Yann LeCun 在 1990 年提出的 OBD 算法,随后 OBS、OBC(OBQ) 等方法不断进行改进,而 GPTQ 是 OBQ 方法的加速版。简单来说,GPTQ 对某个 block 内的所有参数逐个量化,每个参数量化后,需要适当调整这个 block 内其他未量化的参数,以弥补量化造成的精度损失。GPTQ 量化需要准备校准数据集,论文地址。

Transformers量化技术BitsAndBytes

BitsAndBytes 通过将模型参数量化为较低比特位宽的整数表示,从而在不显著影响任务性能的前提下减小了模型的存储需求和计算复杂度。然而,需要仔细选择位宽度,以平衡性能和信息损失之间的权衡。

大模型占用显存粗略计算公式

上面的推导公式中1GB=1024MB=2的10次方MB,1MB=1024KB,1KB=1024B,所以1GB=2的30次方B,1GB=1024*1024*1024B=1073741824B,约等于10亿B,所以约等于10的9次方B。通过上面的计算公式,可以粗略计算出对于6B的大模型,需要12G的显存,当然这只是对模型参数需要占用的显存的粗略计算,实际加载一个大模型,还需要更多的显存。这也是为什么有这些量化技术来缩小模型的大小。

采用AWQ量化模型代码例子

下面的代码例子来源于AWQ官网,在实际运行过程,如果选择加载vicuna-7b-v1.5-awq,一直在报“Token indices sequence length is longer than the specified maximum sequence length for this model (8322 > 4096). Running this sequence through the model will result in indexing errors”,换成了量化“facebook/opt-125m-awq”,量化成功,但是用量化后的模型尝试运行benchmark的脚本,也报错了。错误提示是“/home/ubuntu/python/opt-125-awq is not a folder containing a `.index.json` file or a pytorch_model.bin file”。但是这些错误不影响我们对AWQ量化模型的理解

from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer

model_path = 'lmsys/vicuna-7b-v1.5'
quant_path = 'vicuna-7b-v1.5-awq'
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" }

# Load model
# NOTE: pass safetensors=True to load safetensors
model = AutoAWQForCausalLM.from_pretrained(
    model_path, **{"low_cpu_mem_usage": True, "use_cache": False}
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

# Quantize
model.quantize(tokenizer, quant_config=quant_config)

# Save quantized model
model.save_quantized(quant_path)
tokenizer.save_pretrained(quant_path)

print(f'Model is quantized and saved at "{quant_path}"')

将model_path=‘facebook/opt-125m’可以量化成功。接下来再看看官网的benchmark脚本具体如何对量化后的模型做评估。官网完整的benchmark脚本。整个代码的目的是通过测试不同条件下的生成性能,包括速度和内存使用,以便评估模型的效果。

TimeMeasuringLogitsProcessor 类:在模型前向传播之后调用,用于测量模型生成的时间。通过记录每个时间点,计算了预填充和生成阶段的时间差,以及每个生成步骤的时间差。主要用于测量模型的速度,包括预填充和生成阶段的速度。
warmup 函数:通过进行矩阵乘法来对模型进行预热,以确保模型的权重已经加载到 GPU 中。
generate_torch 和 generate_hf 函数:generate_torch 函数使用 PyTorch 的 model 对象生成 tokens。generate_hf 函数使用 Huggingface Transformers 库的 model.generate 方法生成 tokens。这两个函数都会测量生成的时间,并返回上下文时间和每个生成步骤的时间。
run_round 函数:通过加载模型、进行预热、生成 tokens 等步骤来运行测试的一个循环。
测试了模型在不同上下文长度和生成步骤数下的性能。输出测试结果,包括上下文时间、生成时间、内存使用等。
main 函数:设置不同的上下文长度和生成步骤数的测试轮次。使用给定的生成器(PyTorch 或 Huggingface)运行测试。
运行脚本的时候,参数包括:model_path:模型路径。
quant_file:量化权重的文件名。
batch_size:生成时的批量大小。
no_safetensors:是否禁用安全张量。
generator:生成器类型,可以是 "torch" 或 "hf"。
pretrained:是否使用预训练模型。

采用GPTQ量化模型代码例子

下面的例子来源于gptq官网例子,这个例子中量化的也是opt-125m模型,gptq进行模型量化时,需要传递数据集,这里传递的数据集很简单,就是一句话。

模型量化成功后,用量化后的模型生成内容,可以看到,如果是数据集中的信息,模型能正确生成内容,如果是其他问题,例如“woman works as”,模型就无法输出内容了。所以,如果采用gptq进行模型量化,输入的数据集是非常关键的。

当然也支持一些默认数据集,例如:(包括['wikitext2','c4','c4-new','ptb','ptb-new'])。这些数据集都可以在huggingface上找到。如果采用默认数据集,在初始化GPTQConfig的时候设置dataset参数即可,代码如下所示:

quantization_config = GPTQConfig(
     bits=4, # 量化精度
     group_size=128,
     dataset="c4",
     desc_act=False,
)

实际在gptq的github上提供了很多example的代码,包括量化后评估模型性能的脚本,更多信息可查看这里。

BitsAndBytes代码例子

BitsAndBytes的量化代码例子非常简单,在from_pretrained()方法中初始化三个参数即可。调用量化后的模型,让其生成内容“Merry Chrismas! I am glad to”,量化后的模型生成的内容也比较ok。具体如下图所示:

from transformers import AutoModelForCausalLM

model_id = "facebook/opt-2.7b"

model_4bit = AutoModelForCausalLM.from_pretrained(model_id,
                                                  device_map="auto",
                                                  load_in_4bit=True)

# 获取当前模型占用的 GPU显存(差值为预留给 PyTorch 的显存)
memory_footprint_bytes = model_4bit.get_memory_footprint()
memory_footprint_mib = memory_footprint_bytes / (1024 ** 2)  # 转换为 MiB

print(f"{memory_footprint_mib:.2f}MiB")

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(model_id
                                         )
text = "Merry Christmas! I'm glad to"
inputs = tokenizer(text, return_tensors="pt").to(0)

out = model_4bit.generate(**inputs, max_new_tokens=64)
print(tokenizer.decode(out[0], skip_special_tokens=True))

以上就是对于一些常用的模型量化技术的介绍。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/282933.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

appium入门基础

介绍 appium支持在不同平台的UI自动化,如web,移动端,桌面端等。还支持使用java,python,js等语言编写自动化代码。主要用于自动化测试脚本,省去重复的手动操作。 Appium官网 安装 首先必须环境有Node.js用于安装Appium。 总体来…

OpcUaHelper实现西门子OPC Server数据交互

Opc ua客户端类库,基于.net 4.6.1创建,基于官方opc ua基金会跨平台库创建,方便的实现和OPC Server进行数据交互。 FormBrowseServer 在开发客户端之前,需要使用本窗口来进行查看服务器的节点状态,因为在请求服务器的节点数据之前,必须知道节点的名称,而节点的名称可以…

Docker之网络配置

目录 1.网络概念 网络相关的有ip,子网掩码,网关,DNS,端口号 1.1 ip是什么? ip是唯一定位一台网上计算机 Ip地址的分类: IPV4: 4字节32位整数,并分成4段8位的二进制数,每8位之间用圆点隔开,每8位整数可以转换为一个0~255的十进制整数 【例…

在香橙派5 Plus上搭建Gitlab

作为一个码农,一定知道Github这个最大的成人交友网站。但是Github在国内不稳定,经常拉不下来代码,也就无法推送代码。为了更方便的使用,顺便更好地了解Git工具,决定在香橙派5 Plus上搭建一个属于自己的代码仓库。 1、…

windows怎么在cmd中通过命令关闭防火墙

windows怎么在cmd中通过命令关闭防火墙 1.打开终端(cmd) 2.关闭防火墙 输入命令: netsh advfirewall set allprofiles state off

redis—List列表

目录 前言 1.常见命令 2.使用场景 前言 列表类型是用来存储多个有序的字符串,如图2-19所示,a、b、C、d、e五个元素从左到右组成 了一个有序的列表,列表中的每个字符串称为元素(element) ,一个列表最多可以存储2^32 - 1 个元素…

FA对接FC流程

2、FA进行对接 (1)首先安装好AD域控服务器DHCPDNS(注意,不要忘记了做DNS正反向解析,就是把已经安装了ITA的主机做解析),在里面创建域用户 (2)安装ITA和VAG/VLB&#xf…

ES应用_ES实战

依靠知识库使用es总结一些使用技巧。 1 快速入门 ES是将查询语句写成类似json的形式,通过关键字进行查询和调用。 1.1 创建 下面创建了一个主分片为5,副本分片为1的ES结构。ES本身是一种noschema的结构,但是可以通过指定mapping编程schema的…

遇见sql语句拼装报错 sql injection violation, syntax error: syntax error, expect RPAREN

在使用PostgreSql瀚高数据库时,相同的语句 select * from public.files_info fi where fi.file_size notnull 在DBever能执行,但是在spring中报错 在spring中JPA版本问题导致,不支持这种写法,会识别为sql注入风险,应…

[python]python利用pyaudio录制系统声音没有立体声混音怎么录制系统音频

当电脑没有立体声混音导致Python写代码无法使用pyaudio进行录制系统声音怎么办?查阅资料和安装驱动等方法都不行,难道没办法了吗?那为什么电脑其他软件可以做到呢?因此研究了一下pyaudio在没有立体声混音情况下确实无法录制声音&a…

FreeRTOS学习--41讲 信号量

信号量的定义 是一种解决同步问题的机制,实现对共享资源的有序访问 信号量特点: 当计数值大于0,代表有信号量资源;释放信号量,信号量计数值1;获取则-1 队列和信号量的差异 二值信号量: a.相当于队列长度等…

【C++】STL 容器 - map 关联容器 ① ( std::map 容器简介 | std::map 容器排序规则 | std::map 容器底层实现 )

文章目录 一、std::map 容器1、std::map 容器简介2、std::map 容器排序规则3、std::map 容器底层实现 二、代码示例 - std::map 容器1、代码示例2、执行结果 一、std::map 容器 1、std::map 容器简介 std::map 容器 是 C 语言 标准模板库 ( STL , Standard Template Library ) …

CGAL的AABB tree

1、介绍 AABB树组件提供了一种静态数据结构和算法,用于对有限的三维几何对象集进行高效的交集和距离查询。可以查询数据结构中存储的几何对象集,以进行交集检测、交集计算和距离计算。 交集查询可以是任何类型的,只要在traits类中实现了相应的…

Docker 部署RAP2

1、Github介绍 https://github.com/thx/rap2-delos 2、安装Docker环境 yum install -y yum-utils device-mapper-persistent-data lvm2 yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo yum install -y docker-ce systemctl enable…

华为商城秒杀时加密验证 device_data 的算法研究

前言 之前华为商城放出 Mate60 手机时, 想给自己和家人抢购一两台,手动刷了好几天无果后,决定尝试编写程序,直接发送 POST 请求来抢。通过抓包和简单重放发送后,始终不成功。仔细研究,发现 Cookie 中有一个名为 devic…

HTML5+CSS3③——无语义布局标签、画盒子、CSS定义、CSS引入方式

目录 无语义布局标签 画盒子 CSS定义 小结 CSS引入方式 小结 无语义布局标签 画盒子 CSS定义 小结 CSS引入方式 小结

Vue2 - Vue.observable 介绍

目录 1,介绍2,使用场景和 Vue 实例的区别 1,介绍 官网参考 可以让一个对象变成响应式数据。在 Vue 内部就是用它来处理传递给 Vue 的 data 对象,或是在单文件组件中 data() 返回的对象。 var vm new Vue({data: {count: 0} })…

MAC 中多显示器的设置(Parallels Desktop)

目录 一、硬件列表: 二、线路连接: 三、软件设置: 1. 设置显示器排列位置及显示参数 2. 分别设置外接显示器为:扩展显示器,内建显示器为主显示器 3. 设置Parallels Desktop屏幕参数 四、结果 一、硬件列表&a…

Spark SQL简介与基本用法

Apache Spark是一个强大的分布式计算框架,Spark SQL是其组件之一,用于处理结构化数据。Spark SQL可以使用SQL查询语言来查询和分析数据,同时还提供了与Spark核心API的无缝集成。本文将深入探讨Spark SQL的基本概念和用法,包括数据…

MongoDB的基本使用

MongoDB的引出 使用Redis技术可以有效的提高数据访问速度,但是由于Redis的数据格式单一性,无法操作结构化数据,当操作对象型的数据时,Redis就显得捉襟见肘。在保障访问速度的情况下,如果想操作结构化数据,…