Langchain-Chatchat开源库使用的随笔记(一)

笔者最近在研究Langchain-Chatchat,所以本篇作为随笔记进行记录。
最近核心探索的是知识库的使用,其中关于文档如何进行分块的详细,可以参考笔者的另几篇文章:

  • 大模型RAG 场景、数据、应用难点与解决(四)
  • RAG 分块Chunk技术优劣、技巧、方法汇总(五)

原项目地址:

  • Langchain-Chatchat
  • WIKI教程(有点简单)

在这里插入图片描述


1 Chatchat项目结构

整个结构是server 启动API,然后项目内自行调用API。
API详情可见:http://xxx:7861/docs ,整个代码架构还是蛮适合深入学习

在这里插入图片描述


2 Chatchat一些代码学习

2.1 12个分块函数统一使用

截止 20231231 笔者看到chatchat一共有12个分chunk的函数:

CharacterTextSplitter
LatexTextSplitter
MarkdownHeaderTextSplitter
MarkdownTextSplitter
NLTKTextSplitter
PythonCodeTextSplitter
RecursiveCharacterTextSplitter
SentenceTransformersTokenTextSplitter
SpacyTextSplitter

AliTextSplitter
ChineseRecursiveTextSplitter
ChineseTextSplitter

借用chatchat项目中的test/custom_splitter/test_different_splitter.py来看看一起调用make_text_splitter函数:


from langchain import document_loaders
from server.knowledge_base.utils import make_text_splitter

# 使用DocumentLoader读取文件
filepath = "knowledge_base/samples/content/test_files/test.txt"
loader = document_loaders.UnstructuredFileLoader(filepath, autodetect_encoding=True)
docs = loader.load()

CHUNK_SIZE = 250
OVERLAP_SIZE = 50

splitter_name = 'AliTextSplitter'
text_splitter = make_text_splitter(splitter_name, CHUNK_SIZE, OVERLAP_SIZE)
if splitter_name == "MarkdownHeaderTextSplitter":
    docs = text_splitter.split_text(docs[0].page_content)
    for doc in docs:
        if doc.metadata:
            doc.metadata["source"] = os.path.basename(filepath)
else:
    docs = text_splitter.split_documents(docs)
for doc in docs:
    print(doc)

2.2 知识库问答Chat的使用

本节参考chatchat开源项目的tests\api\test_stream_chat_api_thread.py 以及 tests\api\test_stream_chat_api.py
来探索一下知识库问答调用,包括:

  • 流式调用
  • 单次调用
  • 多线程并发调用

2.2.1 流式调用

import requests
import json
import sys

api_base_url = 'http://0.0.0.0:7861'

api="/chat/knowledge_base_chat"
url = f"{api_base_url}{api}"


headers = {
    'accept': 'application/json',
    'Content-Type': 'application/json',
}


data = {
    "query": "如何提问以获得高质量答案",
    "knowledge_base_name": "ZWY_V2_m3e-large",
    "history": [
        {
            "role": "user",
            "content": "你好"
        },
        {
            "role": "assistant",
            "content": "你好,我是 ChatGLM"
        }
    ],
    "stream": True
}
# dump_input(data, api)
response = requests.post(url, headers=headers, json=data, stream=True)
print("\n")
print("=" * 30 + api + "  output" + "="*30)
for line in response.iter_content(None, decode_unicode=True):
    data = json.loads(line)
    if "answer" in data:
        print(data["answer"], end="", flush=True)
pprint(data)
assert "docs" in data and len(data["docs"]) > 0
assert response.status_code == 200

>>>==============================/chat/knowledge_base_chat  output==============================
 你好!提问以获得高质量答案,以下是一些建议:

1. 尽可能清晰明确地表达问题:确保你的问题表述清晰、简洁、明确,以便我能够准确理解你的问题并给出恰当的回答。
2. 提供足够的上下文信息:提供相关的背景信息和上下文,以便我能够更好地理解你的问题,并给出更准确的回答。
3. 使用简洁的语言:尽量使用简单、明了的语言,以便我能够快速理解你的问题。
4. 避免使用缩写和俚语:避免使用缩写和俚语,以便我能够准确理解你的问题。
5. 分步提问:如果问题比较复杂,可以分步提问,这样我可以逐步帮助你解决问题。
6. 检查你的问题:在提问之前,请检查你的问题是否完整、清晰且准确。
7. 提供反馈:如果你对我的回答不满意,请提供反馈,以便我改进我的回答。

希望这些建议能帮助你更好地提问,获得高质量的答案。

结构也比较简单,call 知识库问答的URL,然后返回,通过response.iter_content来进行流式反馈。

2.2.2 正常调用以及处理并发

import requests
import json
import sys

api_base_url = 'http://139.196.103.143:7861'

api="/chat/knowledge_base_chat"
url = f"{api_base_url}{api}"


headers = {
    'accept': 'application/json',
    'Content-Type': 'application/json',
}


data = {
    "query": "如何提问以获得高质量答案",
    "knowledge_base_name": "ZWY_V2_m3e-large",
    "history": [
        {
            "role": "user",
            "content": "你好"
        },
        {
            "role": "assistant",
            "content": "你好,我是 ChatGLM"
        }
    ],
    "stream": True
}

# 正常调用并存储结果
result = []
response = requests.post(url, headers=headers, json=data, stream=True)

for line in response.iter_content(None, decode_unicode=True):
    data = json.loads(line)
    result.append(data)

answer = ''.join([r['answer'] for r in result[:-1]]) # 正常的结果
>>> ' 你好,很高兴为您提供帮助。以下是一些提问技巧,可以帮助您获得高质量的答案:\n\n1. 尽可能清晰明确地表达问题:确保您的问题准确、简洁、明确,以便我可以更好地理解您的问题并为您提供最佳答案。\n2. 提供足够的上下文信息:提供相关的背景信息和上下文,以便我更好地了解您的问题,并能够更准确地回答您的问题。\n3. 使用简洁的语言:尽量使用简单、明了的语言,以便我能够更好地理解您的问题。\n4. 避免使用缩写和俚语:尽量使用标准语言,以确保我能够正确理解您的问题。\n5. 分步提问:如果您有一个复杂的问题,可以将其拆分成几个简单的子问题,这样我可以更好地回答每个子问题。\n6. 检查您的拼写和语法:拼写错误和语法错误可能会使我难以理解您的问题,因此请检查您的提问,以确保它们是正确的。\n7. 指定问题类型:如果您需要特定类型的答案,请告诉我,例如数字、列表或步骤等。\n\n希望这些技巧能帮助您获得高质量的答案。如果您有其他问题,请随时问我。'

refer_doc = result[-1] # 参考文献
>>> {'docs': ["<span style='color:red'>未找到相关文档,该回答为大模型自身能力解答!</span>"]}

然后来看一下并发:


# 并发调用
def knowledge_chat(api="/chat/knowledge_base_chat"):
    url = f"{api_base_url}{api}"
    data = {
        "query": "如何提问以获得高质量答案",
        "knowledge_base_name": "samples",
        "history": [
            {
                "role": "user",
                "content": "你好"
            },
            {
                "role": "assistant",
                "content": "你好,我是 ChatGLM"
            }
        ],
        "stream": True
    }
    result = []
    response = requests.post(url, headers=headers, json=data, stream=True)

    for line in response.iter_content(None, decode_unicode=True):
        data = json.loads(line)
        result.append(data)
    
    return result

from concurrent.futures import ThreadPoolExecutor, as_completed
import time

threads = []
times = []
pool = ThreadPoolExecutor()
start = time.time()
for i in range(10):
    t = pool.submit(knowledge_chat)
    threads.append(t)

for r in as_completed(threads):
    end = time.time()
    times.append(end - start)
    print("\nResult:\n")
    pprint(r.result())

print("\nTime used:\n")
for x in times:
    print(f"{x}")

通过concurrent的ThreadPoolExecutor, as_completed进行反馈


3 知识库相关实践问题

3.1 .md格式的文件 支持非常差

我们在configs/kb_config.py可以看到:

# TextSplitter配置项,如果你不明白其中的含义,就不要修改。
text_splitter_dict = {
    "ChineseRecursiveTextSplitter": {
        "source": "huggingface",   # 选择tiktoken则使用openai的方法
        "tokenizer_name_or_path": "",
    },
    "SpacyTextSplitter": {
        "source": "huggingface",
        "tokenizer_name_or_path": "gpt2",
    },
    "RecursiveCharacterTextSplitter": {
        "source": "tiktoken",
        "tokenizer_name_or_path": "cl100k_base",
    },
    "MarkdownHeaderTextSplitter": {
        "headers_to_split_on":
            [
                ("#", "head1"),
                ("##", "head2"),
                ("###", "head3"),
                ("####", "head4"),
            ]
    },
}

# TEXT_SPLITTER 名称
TEXT_SPLITTER_NAME = "ChineseRecursiveTextSplitter"

chatchat看上去创建新知识库的时候,仅支持一个知识库一个TEXT_SPLITTER_NAME 的方法,并不能做到不同的文件,使用不同的切块模型。
所以如果要一个知识库内,不同文件使用不同的切分方式,需要自己改整个结构代码;然后重启项目

同时,chatchat项目对markdown的源文件,支持非常差,我们来看看:

from langchain import document_loaders
from server.knowledge_base.utils import make_text_splitter

# 载入
filepath = "matt/智能XXX.md"
loader = document_loaders.UnstructuredFileLoader(filepath,autodetect_encoding=True)
docs = loader.load()

# 切分
splitter_name = 'ChineseRecursiveTextSplitter'
text_splitter = make_text_splitter(splitter_name, CHUNK_SIZE, OVERLAP_SIZE)
if splitter_name == "MarkdownHeaderTextSplitter":
    docs = text_splitter.split_text(docs[0].page_content)
    for doc in docs:
        if doc.metadata:
            doc.metadata["source"] = os.path.basename(filepath)
else:
    docs = text_splitter.split_documents(docs)
for doc in docs:
    print(doc)


首先chatchat对.md文件读入使用的是UnstructuredFileLoader,但是没有加mode="elements"(参考:LangChain:万能的非结构化文档载入详解(一))
所以,你可以认为,读入后,#会出现丢失,于是你即使选择了MarkdownHeaderTextSplitter,也还是无法使用。
目前来看,不建议上传.md格式的文档,比较好的方法是:

  • 文件改成 doc,可以带# / ## / ###
  • 更改configs/kb_config.py当中的TEXT_SPLITTER_NAME = "MarkdownHeaderTextSplitter"

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/282860.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spring Cloud + Vue前后端分离-第10章 基于阿里云OSS的文件上传

源代码在GitHub - 629y/course: Spring Cloud Vue前后端分离-在线课程 Spring Cloud Vue前后端分离-第10章 基于阿里云OSS的文件上传 前面介绍的文件上传是基于本地文件服务器的文件上传&#xff0c;但是自己搭文件服务器会有很多运维的问题&#xff0c;比如磁盘满了要扩容…

VMware安装RHEL9.0版本Linux系统

最近在学习Linux&#xff0c;安装了Red Hat Enterprise Linux 的 9.0版本&#xff0c;简称RHEL9.0。RHEL9.0是Red Hat公司发布的面向企业用户的Linux操作系统的最新版本。我把它安装在虚拟机VMware里来减少电脑性能占用&#xff0c;也防止系统炸搞得我后面要重装。安装RHEL9.0还…

【Unity入门】MenuItem 和 ContextMenu 的使用方法

目录 一、ContextMenu描述使用示例ContextMenuItem使用示例 二、MenuItem描述使用示例 三、MenuItem 和 ContextMenu 的区别 一、ContextMenu 描述 ContextMenu 属性用于向上下文菜单添加命令。 在该附加脚本的 Inspector 中&#xff0c;当用户选择该上下文菜单时&#xff0c…

FA组件详解

1、了解FA核心组件以及功能 &#xff08;1&#xff09;TC&#xff08;Thin Client&#xff1a;瘦终端&#xff09;&#xff1a;就是类似于机顶盒的一个小盒子&#xff0c;里面有CPU、内存、USB、MIC、HDMI等接口&#xff0c;可以理解为小型电脑&#xff0c;但是它里面是没有操作…

Unity 新版 Meta XR SDK 无法导入解决方法

文章目录 &#x1f4d5;教程说明&#x1f4d5;新版 SDK 说明&#x1f4d5;从 Meta 官网导入开发包⭐依赖包⭐如何导入⭐导入后包存放在哪里了&#xff1f;⭐场景样例文件去哪了&#xff1f; 此教程相关的详细教案&#xff0c;文档&#xff0c;思维导图和工程文件会放入 Spatia…

Django 学习教程-介绍与安装

系列 Django 学习教程-第一个 Django 应用-CSDN博客 介绍 Django 是一个高级 Python Web 框架&#xff0c;它鼓励快速开发和干净、实用的设计。 它由经验丰富的开发人员构建&#xff0c;解决了 Web 开发的大部分麻烦&#xff0c;因此您可以专注于在编写应用程序时无需重新发…

C# vs报错 id为XX的进程当前未运行

报错原因&#xff1a;虚拟目录端口被占用 解决方法&#xff1a;重新配置新的目录端口就行 1、选择项目属性 2、更改端口号&#xff0c;点击创建虚拟目录 3、重新生成项目

使用python快速开发与PDF文档对话的Gemini聊天机器人

检索增强生成(Retrieval-augmented generation&#xff0c;RAG)使得我们可以让大型语言模型(LLMs)访问外部知识库数据(如pdf,word、text等)&#xff0c;从而让人们可以更加方便的通过LLM来学习外部数据的知识。今天我们将利用之前学习到的RAG方法&#xff0c;谷歌Gemini模型和l…

「微服务」Saga 模式 如何使用微服务实现业务事务-第二部分

在上一篇文章中&#xff0c;我们看到了实现分布式事务的一些挑战&#xff0c;以及如何使用Event / Choreography方法实现Saga的模式。在本文中&#xff0c;我们将讨论如何通过使用另一种类型的Saga实现&#xff08;称为Command或Orchestration&#xff09;来解决一些问题&#…

Ps:三角形工具

三角形工具 Triangle Tool可以绘制三角形形状&#xff08;矢量形状&#xff0c;或者是基于像素的形状&#xff09;和路径&#xff08;形状轮廓&#xff09;。 快捷键&#xff1a;U ◆ ◆ ◆ 常用操作方法与技巧 1、一般使用拖拽的方式绘制三角形。也可直接在画布上点击&#…

【2023】hadoop基础介绍

&#x1f4bb;目录 Hadoop组成HDFSHDFS操作HDFS分布式文件存储NameNode元数据数据读写流程 YARN和MapReduceMapReduce&#xff1a;分布式计算YARN&#xff1a;资源管控调度YARN架构提交任务到**YARN中运行** Hadoop组成 hadoop安装教程可以看我这篇文章> &#x1f345;hado…

数据结构—树的应用

文章目录 11.树的应用(1).Huffman树#1.加权外部路径长度#2.Huffman算法#3.Huffman编码 (2).二叉搜索树#1.基本定义#2.查找#3.插入结点#4.构建树#5.查找最小值和最大值#6.删除结点#7.一个问题 (3).平衡搜索树#1.满二叉树、完全二叉树和丰满二叉树#2.平衡因子和平衡树#3.左旋与右…

深入解析泛型

一、泛型的诞生 在C#1 中我们还没有泛型的时候我们收集数据通常需要使用到数组&#xff0c;或者使用封装好的数组集合Hashtable ArrayList。 举个例子&#xff1a; 我们在读取文件的时候就会需要一个数组来储存读取的数据的内容 但我们并不知数据的具体长度也就无法在声明的…

2021-05-08 51单片机74HC164、74LS164、74HCT164、74HC154、74HCT154应用三极管控制继电器

74HC164、74HCT164是8位边沿触发式移位寄存器&#xff0c;串行输入数据&#xff0c;然后并行输出。数据通过两个输入端&#xff08;DSA或DSB&#xff09;之一串行输入&#xff1b;任一输入端可以用作高电平使能端&#xff0c;控制另一输入端的数据输入。两个输入端或者连接在一…

【低代码平台】10个开源免费Airtable 的替代方案

Airtable是一个易于使用的简单低代码平台&#xff0c;有助于团队协作管理复杂的数据表&#xff0c;并创建定制的工作流程。把它想象成一个类固醇上的云电子表格。 Airtable还简化了数据输入过程&#xff0c;连接和集成第三方服务和应用程序&#xff0c;并提供了许多数据导入/导…

web综合大实验!!!

目录 一、要求 二、操作步骤 第一步&#xff1a;关闭防火墙&#xff0b;SeLinux 第二步&#xff1a;挂载 第三步&#xff1a;编辑配置文件 第四步&#xff1a;安装软件包 1、安装httpd 2、安装mod_ssl模块 第五步&#xff1a;定义主配置文件 1、创建首页文件 2、重启…

7.java——异常

异常——error&#xff08;资源耗尽&#xff0c;JVM内部系统错误&#xff0c;代码一般处理不了&#xff09;和excption&#xff08;数组越界&#xff0c;空指针访问&#xff0c;代码可以处理&#xff09; java.lang.Throwable;异常体系的根父类 -------java.lang.Error:错误。…

第三部分 连续型需要的积分

目录 温馨提示&#xff1a; 求积分 求分段函数在确定区间的定积分 方法&#xff1a; 例1 例2 例3 例4 例5 例6 例7 求分段函数在到未知数的定积分 方法&#xff1a; 例8 求简单的二重积分 方法&#xff1a; 例9 例10 例11 求f(x,y)的二重积分 方法&#xff1a; 例12 例13 …

软件工程总复习笔记

软件工程课程复习提纲 文章目录 软件工程课程复习提纲一、基本知识点1. 软件工程的概念及目标2. 软件危机的概念及典型表现3. 瀑布模型的概念及特点4. 快速原型模型的特点5. 螺旋模型的基本思想6. 软件生命周期的概念及划分为哪几个阶段7. 软件需求的定义8. 常见的软件需求获取…

Go 泛型之明确使用时机与泛型实现原理

Go 泛型之明确使用时机与泛型实现原理 文章目录 Go 泛型之明确使用时机与泛型实现原理一、引入二、何时适合使用泛型&#xff1f;场景一&#xff1a;编写通用数据结构时场景二&#xff1a;函数操作的是 Go 原生的容器类型时场景三&#xff1a;不同类型实现一些方法的逻辑相同时…