机器学习(一) -- 概述

系列文章目录

机器学习(一) -- 概述

机器学习(二) -- 数据预处理

未完待续……


目录

系列文章目录

前言

一、机器学习定义(是什么)

二、机器学习的应用(能做什么)

三、***机器学习的流派

四、机器学习的系统定义与通俗理解

五、机器学习的基本术语

1、有了数据

2、通过学习算法

3、得到模型

4、进行预测

5、数据集构成简单理解

六、机器学习的分类

1、监督学习(Supervised Learning,有导师学习)

1.1、分类(classification) -- 离散

1.1.1、二分类(binary classification)

1.1.2、多分类(multi-class classification)

1.2、回归(regression) -- 连续

2、无监督学习(Unsupervised Learning,无导师学习)

2.1、聚类

2.2、降维

3、半监督学习(Semi-Supervised Learning)

4、强化学习(Reinforcement Learning)

七、机器学习的算法

八、机器学习的流程


前言

tips:这里只是总结,不是教程哈。

标题前面加“***”的可自行跳过。文章内容被“文章内容”删除线标记的,也可以自行跳过。


一、机器学习定义(是什么)

机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

它是人工智能核心,是使计算机具有智能的根本途径。

-- 百度百科

人工智能(AL)

机器学习(ML)机器学习是人工智能的一个子领域,是人工智能的核心。机器学习是从数据通往智能的技术途径,是现代人工智能的本质。

深度学习(DL)深度学习是机器学习的一个子领域,是目前最火的方向。

加入神经网络的关系表示:

二、机器学习的应用(能做什么)

模式识别(Pattern Recognition,PR)== 机器学习:计算机能够比人类更高效地读取大量的数据、学习数据的特征并从中找出数据的模式。这样的任务也被称为“机器学习”或者“模式识别”。统计学习是使用统计方法的一种机器学习。

计算机视觉(Computer Vision,CV):图像识别(人脸识别)、图像检索、物体识别等。

数据挖掘(Data Mining,DM):推荐系统等。

自然语言处理(Natural Language Processing, NLP):文本分类(Text Classification)、语言模型(Language Modeling)、机器翻译(Machine Translation)、问答系统(Question Answering)、语音识别(Speech Recognition)等。

统计学习(Statistical Learning,SL):支持向量机SVM、核方法等。

等……

三、***机器学习的流派

四、机器学习的系统定义与通俗理解

1、系统定义

假设用P来评估计算机程序在某任务类T上的性能,若一个程序通过利用经验E在T中任务上获得了性能改善,则我们就说关于T和P,该程序对E进行了学习

-- 西瓜书

机器学习 = 任务 + 方法 + 经验 + 性能

任务-T:机器学习要解决的问题                    任务是机器学习的研究对象;

方法-A:   各种机器学习方法                           方法是机器学习的核心内容;

经验-E:训练模型的数据,实例                    经验是机器学习的动力源泉;

性能-P:方法针对任务的性能评估准则        性能是机器学习的检验指标。

2、通俗理解

机器学习是从数据中自动分析获得模型,并利用模型对未知数据进行预测。(类比人类)

从数据中自动分析获得模型,并利用模型对未知数据进行预测。

流程:有了历史数据 --> 通过学习算法(训练) --> 得到模型 --> 用新数据进行预测

目的:机器学习=找一个函数(模型=函数)机器学习 = 任务 + 方法 + 经验 +

五、机器学习的基本术语

按照流程介绍不同术语。

-- 以下内容从【西瓜书】概括而得

1、有了数据

数据集(D,data set):100个西瓜构成一个数据集。

样本(sample,示例,instance):100个西瓜中的每一个西瓜,就是一个样本。

属性(attribute,特征,feature):西瓜的色泽,根蒂,敲声。

        属性值(attribute value):西瓜的色泽为青绿色,青绿即为属性值。

样本空间(sample space,属性空间,attribute space、输入空间)(X):属性张成的空间。“色泽”,“根蒂”,“敲声”作为三个坐标轴,则他们张成一个描述西瓜的三维空间

特征向量(feature vector):颜色、大小、敲起来的振幅。一个维度(dimensionality)

2、通过学习算法

2.1、学习(learning,训练,training)

训练数据(training data)

训练样本(training sample,训练示例,training instance、训练例)

训练集(training set)

假设(hypothesis):学得模型对应关于数据的某种潜在的规律(比如敲声清脆的可能是好瓜)。

真相(真实,ground-truth):潜在规律本身(比如敲声清脆的一定是好瓜)。

学习器(learner,模型,model):得到的模型。

2.2、样本结果信息

标记(label):((色泽=青绿;根蒂=蜷缩;敲声=浊响),好瓜),“好瓜”称为“标记”。

样例(example):拥有标记信息的示例称为样例

用(xi,yi)表示第i个样例,其中yi属于Y,是示例xi的标记。
标记空间(label space、输出空间):Y是所有标记的集合。

3、得到模型

分类、回归、聚类等,具体后面【机器学习的分类】详讲。

4、进行预测

4.1、测试(testing):

测试样本(testing sample,测试示例,testing instance、测试例)

4.2、测试能力:

4.3、测试(testing):

泛化(generalization)能力:适应新样本(未见示例,unseen instance)的能力

--     独立同分布:假设样本空间中全体样本服从一个未知“分布”(distribution)D,我们获得的每一个样本都是独立地从这个分布上采样获得的,即“独立同分布”(independent and identically distributed,简称,i.i.d.)

5、数据集构成简单理解

结构:特征值(房子面积,房子位置、房子楼层)+目标值(这里是价格)

对于每一行数据我们可以称为样本

有些数据集可以没有目标值,如下

六、机器学习的分类

1、监督学习(Supervised Learning,有导师学习)

从有标记数据中学习模型

1.1、分类(classification) -- 离散

1.1.1、二分类(binary classification)

正类(positive class)、反类(negative class,负类)
Y={-1,+1}/{0,1}        (Y被分成-1,1,或者0,1)

eg:识别猫和狗。

1.1.2、多分类(multi-class classification)

|Y|>2

eg:数字识别

1.2、回归(regression) -- 连续

预测的是连续值,

Y=R(实数集)

eg:房屋价格预测:

2、无监督学习(Unsupervised Learning,无导师学习)

从无标记数据中学习模型

2.1、聚类

分为若干组,每个组称为一个“簇”(cluster)

eg

2.2、降维

        在原始的高维空间中,包含冗余信息和噪声信息,会在实际应用中引入误差,影响准确率;而降维可以提取数据内部的本质结构,减少冗余信息和噪声信息造成的误差,提高应用中的精度

        还有异常检测等……

3、半监督学习(Semi-Supervised Learning)

        半监督学习(Semi-Supervised Learning,SSL)是模式识别和机器学习领域研究的重点问题,是监督学习与无监督学习相结合的一种学习方法。半监督学习使用大量的未标记数据,以及同时使用标记数据,来进行模式识别工作。当使用半监督学习时,将会要求尽量少的人员来从事工作,同时,又能够带来比较高的准确性,因此,半监督学习正越来越受到人们的重视。

--  百度百科

4、强化学习(Reinforcement Learning)

        实质是自主决策问题,即自动进行决策,并且可以做连续决策。

        以“试错”的方式进行学习,通过与环境进行交互获得的奖赏指导行为,目标是使智能体获得最大的奖赏。

七、机器学习的算法

        有的人总想先知道机器学习的算法有哪些(比如我QwQ)

1、监督学习

1.1、线性回归(Linear Regression)

1.2、逻辑回归(Logistic Regression)

1.3、决策树(Decision Trees)

1.3.1、随机森林(Random Forests)

1.4、深度学习(Deep Learning)算法,如神经网络(Neural Networks)

        卷积神经网络(CNN)、循环神经网络(RNN)和生成对抗网络(GAN)

1.5、支持向量机(Support Vector Machines)

1.6、朴素贝叶斯(Naive Bayes)

1.7、K近邻算法(K-Nearest Neighbors)

2、无监督学习

2.1、聚类算法

        将数据样本划分为不同的组或簇,使得同一组内的样本相似度高,不同组之间的相似度较低。

2.1.1、K均值聚类(K-Means Clustering)
2.1.2、层次聚类(Hierarchical Clustering)
2.1.3、DBSCAN

2.2、降维算法

        将高维数据映射到低维空间,保留数据的主要信息,同时减少数据的维度。

2.2.1、主成分分析(Principal Component Analysis,PCA)
2.2.2、线性判别分析(LDA)
2.2.3、t-SNE

2.3、关联规则挖掘,关联规则学习(Association Rule Learning)

        从数据集中发现频繁出现的项集或关联规则,用于发现数据项之间的关联性。

2.3.1、Apriori
2.3.2、FP-growth

2.4、异常检测

        检测数据中的异常或离群点,这些数据与正常数据的行为模式不符。

2.4.1、基于统计的方法
2.4.2、基于聚类的方法
2.4.3、基于密度的方法

2.5、高斯混合模型(Gaussian Mixture Models)

        暂时先放这吧!

3、半监督学习

        标签传播算法、半监督支持向量机和深度置信网络等

4、强化学习

        Q-learning、SARSA、策略梯度和深度强化学习

5、集成学习(多学习器组合)

5.1、随机森林(Random Forests)

5.2、梯度提升树

5.1、AdaBoost

八、机器学习的流程

机器学习的数据集划分一般分为两个部分:

训练数据:用于训练,构建模型。一般占70%-80%(数据量越大,取得比例最好越大)

测试数据:用于模型评估,检验模型是否有效。一般占20%-30%

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/281705.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ArkUI动画概述

目录 1、按照页面分类 2、按照功能分类 3、显示动画 4、属性动画 动画的原理是在一个时间段内,多次改变UI外观,由于人眼会产生视觉暂留,所以最终看到的就是一个“连续”的动画。UI的一次改变称为一个动画帧,对应一次屏幕刷新&a…

图像分割实战-系列教程2:Unet系列算法(Unet、Unet++、Unet+++、网络架构、损失计算方法)

图像分割实战-系列教程 总目录 语义分割与实例分割概述 Unet系列算法 1、Unet网络 1.1 概述 整体结构:概述就是编码解码过程简单但是很实用,应用广起初是做医学方向,现在也是 虽然用的不是很多,在16年特别火,在医学…

GRNdb:解码不同人类和小鼠条件下的基因调控网络

GRNdb:解码不同人类和小鼠条件下的基因调控网络 摘要introduction数据收集和处理Single-cell and bulk RNA-seq data collection and processing 单细胞和bulk RNA-seq 数据收集和处理Cell cluster identification for scRNA-seq datasets (scRNA-seq 数…

在 Linux 中使用 cat 命令

cat 命令用于打印文本文件的文件内容。至少,大多数 Linux 用户都是这么做的,而且没有什么问题。 cat 实际上代表 “连接(concatenate)”,创建它是为了 合并文本文件。但只要有一个参数,它就会打印文件内容。因此,它是用…

vscode中默认shell选择

terminal.integrated.defaultProfile.linux在vs的Preference的Settings里面搜索terminal.integrated.defaultProfile.linux,默认的应该是null,将其修改为bash即可。 linux———/bin/sh、 /bin/bash、 /bin/dash的区别

[设计模式 Go实现] 创建型~抽象工厂模式

抽象工厂模式用于生成产品族的工厂,所生成的对象是有关联的。 如果抽象工厂退化成生成的对象无关联则成为工厂函数模式。 比如本例子中使用RDB和XML存储订单信息,抽象工厂分别能生成相关的主订单信息和订单详情信息。 如果业务逻辑中需要替换使用的时候…

基于JWT的用户token验证

1. 基于session的用户验证 2. 基于token的用户身份验证 3. jwt jwt代码实现方式 1. 导包 <dependency><groupId>com.auth0</groupId><artifactId>java-jwt</artifactId><version>3.18.2</version> </dependency> 2. 在登录…

golang锁源码【只有关键逻辑】

条件锁 type Cond struct {L Lockernotify notifyList } type notifyList struct {wait uint32 //表示当前 Wait 的最大 ticket 值notify uint32 //表示目前已唤醒的 goroutine 的 ticket 的最大值lock uintptr // key field of the mutexhead unsafe.Pointer //链表头…

Redis经典五大类型源码及底层实现(一)

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是爱吃芝士的土豆倪&#xff0c;24届校招生Java选手&#xff0c;很高兴认识大家&#x1f4d5;系列专栏&#xff1a;Spring源码、JUC源码、Kafka原理、分布式技术原理、数据库技术&#x1f525;如果感觉博主的文章还不错的…

Excel模板填充:从minio上获取模板使用easyExcel填充

最近工作中有个excel导出的功能&#xff0c;要求导出的模板和客户提供的模板一致&#xff0c;而客户提供的模板有着复杂的表头和独特列表风格&#xff0c;像以往使用poi去画是非常耗时间的&#xff0c;比如需要考虑字体大小&#xff0c;单元格合并&#xff0c;单元格的格式等问…

Cisco模拟器-企业网络部署

某企业园区网有&#xff1a;2个分厂&#xff08;分别是&#xff1a;零件分厂、总装分厂&#xff09;1个总厂网络中心 1个总厂会议室&#xff1b; &#xff08;1&#xff09;每个分厂有自己的路由器&#xff0c;均各有&#xff1a;1个楼宇分厂网络中心 每个楼宇均包含&#x…

Apache Doris (五十五): Doris Join类型 - Colocation Join

🏡 个人主页:IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 🚩 私聊博主:加入大数据技术讨论群聊,获取更多大数据资料。 🔔 博主个人B栈地址:豹哥教你大数据的个人空间-豹哥教你大数据个人主页-哔哩哔哩视频 目录 1. Colocation Join原理

Gitee触发Jenkins403讨逆猴子-解决方案

Jenkins报&#xff1a;403 No valid crumb was included in the request 具体解决方案如下&#xff1a; 执行如下脚本内容&#xff1a; hudson.security.csrf.GlobalCrumbIssuerConfiguration.DISABLE_CSRF_PROTECTION true成功后&#xff1a; Gitee再次测试&#xff1a…

51单片机项目(24)——基于51单片机的温控风扇protues仿真

1.功能设计 使用传感器测量温度&#xff0c;并将温度显示在LCD1602上。如果温度超过阈值&#xff0c;那么就打开风扇&#xff0c;否则风扇不打开。&#xff08;仿真的时候&#xff0c;用直流电机模拟风扇&#xff09;。 仿真截图如下&#xff1a; 此时温度是27度&#xff0c;我…

C++初阶——基础知识(函数重载与引用)

目录 1.命名冲突 2.命名空间 3.缺省参数 4.函数重载 1.函数重载的特点包括&#xff1a; 2.函数重载的好处包括&#xff1a; 3.引用 引用的特点包括 引用的主要用途包括 引用和指针 引用 指针 类域 命名空间域 局部域 全局域 第一个关键字 命名冲突 同一个项目之间冲…

自动驾驶学习笔记(二十四)——车辆控制开发

#Apollo开发者# 学习课程的传送门如下&#xff0c;当您也准备学习自动驾驶时&#xff0c;可以和我一同前往&#xff1a; 《自动驾驶新人之旅》免费课程—> 传送门 《Apollo开放平台9.0专项技术公开课》免费报名—>传送门 文章目录 前言 控制算法 控制标定 控制协议…

C# PrinterSettings修改打印机纸张类型,paperType

需求&#xff1a;直接上图&#xff0c;PrinterSettings只能改变纸张大小&#xff0c;打印质量&#xff0c;无法更改打印纸类型 爱普生打印机打印照片已经设置了最高质量&#xff0c;打印图片仍不清晰&#xff0c;需要修改打印纸类型&#xff0c;使用PrintDialog调出对话框&…

Avalonia学习(十五)-OxyPlot

今天开始继续Avalonia练习。展示一些样例&#xff0c;尤其是第三方库的使用。 本节&#xff1a;OxyPlot 1.引入OxyPlot.Avalonia 2.项目引入 在Main方法里增加OxyPlotModule.EnsureLoaded()方法调用。 public static void Main(string[] args) {OxyPlotModule.EnsureLoade…

向量数据库调研

向量数据库的优势 数据库类型 适用场景 典型数据库举例 关系型数据库&#xff08;RDBMS&#xff09; 处理结构化数据&#xff0c;擅长OLTP&#xff0c;如财务、人事管理等。 MySQL&#xff0c;Oracle&#xff0c;SQL Server 非关系型数据库&#xff08;NoSQL&#xff09;…

太阳系三体模拟器

介绍 《三体》是刘慈欣创作的长篇科幻小说&#xff0c;文中提到的三体问题比较复杂和无解。 该项目代码就是利用 Python 来模拟三体的运行&#xff0c;此项目代码完全共享&#xff0c;欢迎下载。 我们可以自己通过调整天体的初始坐标、质量和矢量速度等等参数来自定义各种场景…