有效延缓痴呆症:延世大学发现梯度提升机模型能准确预测 BPSD 亚综合征

内容一览:随着人口老龄化程度不断加剧,痴呆症已经成为公共健康问题。目前医学界治疗该病还只能通过药物缓解,尚未发现治愈的有效方法,因此,预防痴呆症尤为紧迫。在这一背景下,延世大学的研究人员开发了多个预测 BPSD 的机器学习模型,并对这些模型进行了验证。实验结果表明,机器学习能够有效预测 BPSD 亚综合症。

关键词:痴呆症   BPSD   梯度提升机

本文首发自 HyperAI 超神经微信公众平台~

目前,全球超 5.5 亿人患有痴呆症 (阿尔茨海默病为最常见类型),每年新发病例接近 1000 万,随着人口老龄化程度不断加剧,预计到 2050 年,这一数字将增加两倍。痴呆症是一种脑部疾病,会导致患者记忆力、思维和推理能力缓慢下降。该疾病主要影响老年人,是导致老年人失去自理能力的主要原因之一,在全球最主要的死亡原因(按死亡总人数排列)中位于第七位,前三位分别是缺血性心脏病、中风及慢性阻塞性肺病。

通常,痴呆症患者除了认知障碍外,还表现出一系列行为和心理症状 (BPSD),如躁动、攻击、冷漠和抑郁等。这些症状是痴呆症护理中最为复杂、最具有挑战性的问题,它们不仅导致病人无法独立生活,同时也给照护人员带来相当大的负担。

近期,韩国延世大学 (Yonsei University) 的研究人员 Eunhee Cho 等人开发了多个用于预测 BPSD 的机器学习模型,并对它们进行了验证。目前该研究已发布在《Scientifc Reports》期刊,标题为「Machine learning‑based predictive models for the occurrence of behavioral and psychological symptoms of dementia: model development and validation」。

   该研究成果已发表在《Scientific Reports》上

论文地址:

Machine learning-based predictive models for the occurrence of behavioral and psychological symptoms of dementia: model development and validation | Scientific Reports

数据集

本研究分三次进行数据收集,共使用了 187 名痴呆症患者信息进行模型训练,另外 35 名患者信息用于外部验证。其中第二次数据收集是对第一次数据收集参与者进行的重复测量,第三次数据收集则招募了新的参与者进行测量。研究中,第一次和第二次收集的数据用作训练集,第三次收集的数据集用于测试集。

为了对参与者进行全面的特征信息收集,研究人员首先调查了他们的健康数据(年龄、性别、婚姻状况等)和发病前的性格类型(韩国五大人格量表 BFI-K),其次使用身体活动记录仪监测夜间睡眠和活动水平,最后又采用了一种症状日记 (symptom diary) 来记录照料者感知到的症状的触发因素 (饥饿/口渴、排尿/排便、疼痛、失眠、噪音等) 以及患者每天发生的 12 种 BPSD。此外,这些症状也被划分为 7 个亚综合症,下图直观展示了身体活动记录仪和症状日记数据的记录情况。

表 1:身体活动记录仪和症状日记的统计情况

SD:标准差

TST:总睡眠时间

WASO:入睡后醒来时间

NoA:醒来次数

MAL:清醒时间

METs:代谢当量

MVPA:中度至剧烈的身体活动

BPSD:痴呆症行为和心理症状

其他原因:其他看护者感知的 BPSD 触发因素(治疗、噩梦等)

不过,由于参与者不服从或装置佩戴不当等原因,导致活动记录仪数据缺失,据统计,数据缺少者占总参与人数的 36%,平均每人缺失 0.9 天数据。因此,研究人员采用链式方程的多重插补方法 (multivariate imputation was applied using chained equations) 来处理这部分缺失数据。

实验过程

研究人员训练了 4 个模型,以确定预测每个亚综合症的最佳模型。基于研究结果,研究人员可以将这些模型应用于临床监测和预测 BPSD 亚综合症。同时针对潜在的 BPSD 影响因素进行干预,实现以患者为中心的痴呆症护理服务。此外,机器学习  算法 还可以嵌入智能手机应用程序中,以进一步提高其价值。

模型性能 

研究人员采用了 4 个机器学习算法,包括逻辑  回归 (logistic regression)、随机森林 (random forest)、梯度提升机 (gradient boosting machine) 和  支持向量机 (support vector machine) ,通过各自特有的学习算法评估模型性能,挑选出预测 BPSD 亚综合征最好的模型。这里,逻辑回归模型最为常见和成熟,因此作为基准模型用于判断机器学习的性能提升程度。

基于训练集,通过五重交叉验证,不同模型预测 BPSD 亚综合征的性能如下图:

表 2:基于训练集,不同模型预测 BPSD 亚综合症性能

AUC:ROC 曲线下的面积

LR:逻辑回归模型

RF:随机森林模型

GBM:梯度提升机模型

SVM:支持向量机模型

ROC 曲线:ROC (Receiver Operating Characteristic Curve) 曲线是一种描绘  分类器 性能的图形工具。

AUC 值:AUC (Area Under the Curve) 值表示 ROC 曲线下的面积,用于衡量分类器性能。AUC 值越接近 1,表示分类器性能越好。

表 2 显示,梯度提升机模型在预测多动症 (0.706)、情感症状 (0.747) 和进食障碍 (0.816) 方面 AUC 值较高;支持向量机模型在预测精神症状方面 AUC 值 (0.706) 最高;随机森林模型在睡眠和夜间行为方面 AUC 值 (0.942) 最高;逻辑回归模型在异常活动行为 (0.822) 和病理性欣快症 (Euphoria/elation, 0.696) 方面 AUC 值最高。

模型验证 

研究人员使用了外部验证方法,在第三次收集的数据集上对模型进行验证。基于测试集,不同模型预测 BPSD 亚综合症的性能如下图:

表 3:基于测试数据集,不同模型预测 BPSD 亚综合症性能

AUC:ROC 曲线下的面积

LR:逻辑回归模型

RF:随机森林模型

GBM:梯度提升机模型

SVM:支持向量机模型

表 3 显示,对比逻辑回归模型,机器学习模型的表现都要更好。具体来看,对大多数亚综合症来说,随机森林和梯度提升机模型性能表现都优于逻辑回归和支持向量机模型;随机森林模型在预测多动症 (0.835)、病理性欣快症 (0.968) 和进食障碍 (0.888) 方面比其他预测模型的 AUC 值要高;梯度提升机模型在预测精神症状 (0.801) 方面比其他预测模型的 AUC 值要高;支持向量机模型在睡眠和夜间行为 (0.929) 方面 AUC 值最高。

综合两图表信息,研究人员发现在预测 7 个亚综合征方面,梯度提升机模型平均 AUC 值最高,即表现最佳。与此同时,研究人员也提醒,在测试数据集的样本量较小情况下,需要谨慎推断预测性能的结果,并建议未来应进行更大样本量的重复实验以获得更准确的预测结果。

国内成果:提前十年预测痴呆症发病

在痴呆症预测方面,除了国外,国内也取得了令人瞩目的成果。去年九月,复旦大学附属华山医院神经内科主任医师郁金泰临床研究团队,联合复旦大学类脑智能科学与技术研究院冯建峰教授、程炜青年研究员算法团队开发了 UKB-DRP 痴呆预测模型。

该模型可以预测个体未来五年、十年甚至更长时间内是否会发病,筛查出处于痴呆症病程早期的群体,包括全因痴呆及其主要亚型 (如阿尔茨海默病)。该研究成果已发表在《柳叶刀》子刊《电子临床医学》上。

论文地址:

https://www.thelancet.com/journals/eclinm/article/PIIS2589-5370(22)00395-9/fulltext

这一研究成果也显示出了国内在痴呆症预测领域的创新实力和科研水平。未来,随着更多机构和研究团队的加入,以及更全面、多样化数据的积累,我们有望看到更多国内外的合作与进展。借助  人工智能 和大数据分析的力量,为预防、治疗和管理痴呆症做出更大的贡献,为患者和家庭带来更多希望和福祉。

本文首发自 HyperAI 超神经微信公众平台~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/28123.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【每日挠头算法题(5)】重新格式化字符串|压缩字符串

欢迎~ 一、重新格式化字符串思路1:构造模拟具体代码如下: 思路2:双指针法具体代码如下: 二、字符串压缩思路1:简单替换 总结 一、重新格式化字符串 点我直达~ 思路1:构造模拟 1.遍历字符串,…

2023-6-12-第三式单例模式

🍿*★,*:.☆( ̄▽ ̄)/$:*.★* 🍿 💥💥💥欢迎来到🤞汤姆🤞的csdn博文💥💥💥 💟💟喜欢的朋友可以关注一下&#xf…

HTTPS

HTTP 协议内容都是按照文本的方式明文传输的。 这就导致在传输过程中出现一些被篡改的情况。为了保证安全,现在大多数网站都采用HTTPS协议。HTTPS协议是在HTTP协议的基础上引入了一个加密层SSL。 目录 HTTPS的加密流程对称加密非对称加密为什么引入非对称加密&…

Python处理办公自动化的10大场景

在编程世界里,Python已经是名副其实的网红了。Python最大优势在于容易学,门槛比Java、C低非常多,给非程序员群体提供了用代码干活的可能性。当然Python能成为大众编程工具,不紧是因为易学,还因为Python有成千上万的工具…

抖音电商发展路径:从外链种草到达人/品牌直播

复盘抖音电商发展,可以总结出以下几点发展特征: 策略重心的变化 以种草为核心,给电商引流站外成交(2019 年及之前)→ 力推达人直播但效 果一般(2020 上半年)→ 推品牌自播并彻底闭环&#xff0…

Redis.conf 详解

我们启动 Redis,一般都是通过 Redis.conf 启动。 因此,我们必须了解 Redis.conf 的配置,才能更好理解和使用 Redis。 单位 单位注意事项:当需要内存大小时,可以指定为1k 5GB 4M等 通常形式: 1k > 1000字…

谈谈几个常见数据结构的原理

数组 数组是最常用的数据结构,创建数组必须要内存中一块 连续 的空间,并且数组中必须存放 相同 的数据类型。比如我们创建一个长度为10,数据类型为整型的数组,在内存中的地址是从1000开始,那么它在内存中的存储格式如…

【lvs集群】HAProxy搭建Web集群

HAProxy搭建Web集群 一、 HAProxy简介1.1HAProxy主要特性1.2HAProxy负载均衡策略非常多,常见的有如下8种1.3LVS、Nginx、HAproxy的区别1.4常见的Web集群调度器 二、Haproxy搭建 Web 群集haproxy服务器部署节点服务器部署 三、定义监控页面与定义日志3.1定义监控页面…

Multimodal fusion via cortical network inspired losses(第一次优质论文分享)

Multimodal fusion via cortical network inspired losses 论文介绍1. 论文研究的任务是什么?2. 论文关注/拟解决的问题是什么?3. 论文提出什么方法如何解决这个问题?4. 如何设计实验 来证明 所提方法确实解决了 拟解决的问题? 论…

kotlin协程flow retry功能函数返回失败后重试(4)

kotlin协程flow retry功能函数返回失败后重试&#xff08;4&#xff09; import kotlinx.coroutines.delay import kotlinx.coroutines.flow.* import kotlinx.coroutines.runBlockingfun main(args: Array<String>) {var count 0 //重试计数runBlocking {load().onEach…

RetinaNet网络介绍

前言 上一篇博文我们介绍了Focal Loss&#xff0c;原理也比较简单&#xff0c;有不了解的小伙伴可以先跳转到之前的博文了解一下。Focal Loss介绍。这篇博文我们来看下Focal Loss的出处&#xff1a;Focal Loss for Dense Object Detection&#xff0c;这篇论文提出了RetainNet之…

chatgpt赋能python:Python怎么建服务器?

Python怎么建服务器&#xff1f; 作为一名具有10年Python编程经验的工程师&#xff0c;我深入研究了Python的一些高级特性&#xff0c;其中包括Python如何建立服务器的方法。Python是一个高级的编程语言&#xff0c;可以轻松创建服务器应用程序&#xff0c;并为您的网站提供高…

低秩矩阵(Low-Rank)的意义

&#xff11;&#xff0e;回顾基础&#xff1a; 矩阵的秩度量的是矩阵行列之间的相关性&#xff0c;如果各行各列都是线性无关的&#xff0c;矩阵就是满秩。非零元素的行或列决定了秩的大小。&#xff0f;&#xff0f;划重点&#xff0c;秩可以度量矩阵自身相关性 讲个小故事…

windows 服务程序和桌面程序集成(七)效果演示及源程序下载

系列文章目录链接 windows 服务程序和桌面程序集成&#xff08;一&#xff09;概念介绍windows 服务程序和桌面程序集成&#xff08;二&#xff09;服务程序windows 服务程序和桌面程序集成&#xff08;三&#xff09;UDP监控工具windows 服务程序和桌面程序集成&#xff08;四…

计算机提示“找不到vcruntime140.dll,无法继续执行代码可”以这样子修复

首先&#xff0c;对于那些不熟悉的人来说&#xff0c;vcruntime140.dll是一个关键文件&#xff0c;用于在Windows操作系统上运行使用C语言编写的大型应用程序。如果你正在运行或安装这样的应用程序&#xff0c;但找不到vcruntime140.dll文件&#xff0c;那么你的应用程序可能无…

Maven私服

Maven 私服是一种特殊的远程仓库&#xff0c;它是架设在局域网内的仓库服务&#xff0c;用来代理位于外部的远程仓库&#xff08;中央仓库、其他远程公共仓库&#xff09;。 建立了 Maven 私服后&#xff0c;当局域网内的用户需要某个构件时&#xff0c;会按照如下顺序进行请求…

低代码崛起:会让程序员饭碗不保,人工智能或成其催化剂

人工智能技术目前发展的趋势如何 关于人工智能技术的评价&#xff0c;大众的评价几乎算是较为一致的&#xff0c;都认为其已成为人类有史以来最具革命性的技术之一。当然了&#xff0c;可能目前的我们还是很难想象机器自主决策所产生的影响&#xff0c;但可以肯定的是&#xff…

ELF文件结构和实战分析

文章目录 示例编译运行 ELF文件格式ELF HeaderELF Section Header Table (节头表)sh_typesh_flagssh_link、sh_info 节链接信息 ELF Sections节的分类.text节.rodata节.plt节&#xff08;过程链接表&#xff09;.data节.bss节.got.plt节&#xff08;全局偏移表-过程链接表&…

ArkTS语言HarmonyOS/OpenHarmony应用开发-message事件刷新卡片内容

开发过程 在卡片页面中可以通过postCardAction接口触发message事件拉起FormExtensionAbility&#xff0c;然后由FormExtensionAbility刷新卡片内容。 common&#xff1a;公共文件 通过点击button按钮&#xff0c;刷新卡片内容。代码示例&#xff1a; WidgetCard.ets let stor…

内网渗透—Linux上线

内网渗透—Linux上线 1. 前言2. 下载插件3. CS配置3.1. 客户端配置3.1.1. 导入插件文件3.1.2. 配置监听 3.2. 服务端配置3.2.1. 导入配置文件 3.3. 生成木马3.3.1. 修改cna文件3.3.2. 修改后效果 3.4. 执行木马 1. 前言 默认情况下CS是不支持上线Linux的&#xff0c;只支持上线…