深度学习-数据基本使用

数据使用

文章目录

  • 数据使用
    • 一、数据的获取
      • 1、图片爬虫工具
      • 2、视频爬虫工具
      • 3、复杂的爬虫工具(flickr)
      • 4、按照用户的ID来爬取图片
      • 5、对一些特定的网站进行爬(摄影网站)(图虫、500px,花瓣网等等)
      • 6、爬虫合集
    • 二、数据整理
      • 1、数据检查与归一化
      • 2、数据去重
    • 三、数据标注
      • 1、labelme
      • 2、其他的一些标注工具
    • 四、数据增强方法
      • 1、基本数据增强方法
      • 2、自动数据增强方法
      • 3、从零生成新的数据
    • 五、pytorch数据增强实战(针对图像分类任务)
      • 1、pytorch数据增强接口
      • 2、pytorch数据增强实践(目标检测)
      • 3、数据增强开源库imgaug介绍
      • 4、imaug开源库具体的几个例子:

一、数据的获取

1、图片爬虫工具

https://github.com/sczhengyabin/Image-Downloader

2、视频爬虫工具

https://github.com/iawia002/annie

3、复杂的爬虫工具(flickr)

https://github.com/chenusc11/flickr-crawler

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ecWEH3Hf-1652447813334)(/home/wl/.config/Typora/typora-user-images/image-20220502105451429.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-jFhiJwhJ-1652447768978)(/home/wl/.config/Typora/typora-user-images/image-20220502105603659.png)]

4、按照用户的ID来爬取图片

https://github.com/hellock/icrawler

5、对一些特定的网站进行爬(摄影网站)(图虫、500px,花瓣网等等)

https://github.com/chenusc11/darrenfantasy/image_crawler

6、爬虫合集

https://github.com/facert/awesome-spider

在这里插入图片描述

二、数据整理

1、数据检查与归一化

  • 去除坏图与尺寸异常

  • 格式归一化

    • 类型归一化(jpg,png)
    • 命名归一化

    下面这个代码是去除坏图以及命名归一化

    from pathlib import Path
    import datetime
    import cv2
    import os
    
    def listfiles(rootDir, ifrename=True):
        list_dirs = os.walk(rootDir)
        num = 0
        # os.walk 会迭代遍历文件夹下面的每一个文件夹和文件的名字,然后进行重命名,一直遍历到最低层
        for root, dirs, files in list_dirs:
            files.sort()
            for d in dirs:
                print(os.path.join(root, d))
            for f in files:
                fileid = f.split('.')[0]
                filepath = os.path.join(root, f)
                try:
                    src = cv2.imread(filepath, 1)
                    print("src=", filepath, src.shape)
                    # 去除原来的图片
                    os.remove(filepath)
                    if ifrename:
                        # 前面补0到5位数字
                        cv2.imwrite(os.path.join(root ,str(num).zfill(5) + ".jpg"), src)
                        num = num + 1
                    else:
                        cv2.imwrite(os.path.join(root, fileid + ".jpg"), src)
                except:
                    os.remove(filepath)
                    continue
    
    if __name__ == "__main__":
        listfiles("/home/wl/linshi/linshi2")#这个文件夹下面有多个文件夹也是可以的
        
        # 下面这个是控制小数位数的输出的,可以看着用
        #a = 3.1415926
        #print(round(a, 4))
        #print("%.2f" % a)
        #print("{:.3f}".format(a))
    

2、数据去重

  • 相同的图像(内容完全一样,只不过分辨率不同)
  • 相似的图像(连续视频帧,扰动污染有水印等等)

下面的代码是去除相同的图片(基于MD5,直接在该文件夹下删除相同的图片,或者其他文件也行)(单文件夹和多文件夹都有)

import os
import hashlib
import sys


def get_md5(file):
    file = open(file, 'rb')
    md5 = hashlib.md5(file.read())
    file.close()
    md5_values = md5.hexdigest()
    return md5_values


def remove_by_md5_singledir(file_dir):
    file_list = os.listdir(file_dir)
    md5_list = []
    print("去重前图像的数量:" + str(len(file_list)))
    for filepath in file_list:
        filemd5 = get_md5(os.path.join(file_dir, filepath))
        if filemd5 not in md5_list:
            md5_list.append(filemd5)
        else:
            os.remove(os.path.join(file_dir, filepath))
    print("去重后图像数量:" + str(len(os.listdir(file_dir))))


def remove_by_md5_multidir(file_list):
    md5_list = []
    print("去重前图像数量:" + str(len(file_list)))
    for filepath in file_list:
        filemd5 = get_md5(filepath)
        file_id = filepath.split('/')[-1]
        file_dir = filepath[0:len(filepath) - len(file_id)]
        if filemd5 not in md5_list:
            md5_list.append(filemd5)
        else:
            os.remove(filepath)
    print("去重后图像的数量:" + str(len(md5_list)))


if __name__ == "__main__":
    file_dir = sys.argv[1]
    remove_by_md5_singledir(file_dir)

    file_dir1 = sys.argv[1]
    file_list1 = os.listdir(file_dir1)
    file_list1 = [os.path.join(file_dir1, x) for x in file_list1]
    file_dir2 = sys.argv[2]
    file_list2 = os.listdir(file_dir2)
    file_list2 = [os.path.join(file_dir2, x) for x in file_list2]
    remove_by_md5_multidir(file_list1 + file_list2)

下面的代码是去除相同或者相似的图片(基于图片内容进行判断)(单文件夹的模式)

import numpy as np
import cv2
import os

def compare_image(image1, image2, mode='same'):
    # 比较是否完全相同,这个非常严格,要求每个像素都相同
    if mode == 'same':
        assert (image1.shape == image2.shape)
        diff = (image1 == image2).astype(np.int)
        if cv2.countNonZero(diff) == image1.shape[0]* image1.shape[1]:
            return 1.0
    # 比较是否相似,基于绝对差阈值
    elif mode == 'abs':
        assert (image1.shape == image2.shape)
        diff = np.sum(np.abs(image1.astype(np.float) - image2.astype(np.float)))
        return diff / (image1.shape[0] * image1.shape[1])
    return 0

def remove_by_pixel_singledir(file_dir, mode, th=5.0):
    file_list = os.listdir(file_dir)
    print('去重前图像的数量:' + str(len((file_list))))
    for i in range(0, len(file_list)):
        if i < len(file_list) - 1:
            imagei = cv2.imread(os.path.join(file_dir, file_list[i]), 0)
            imagei = cv2.resize(imagei, (128, 128), interpolation=cv2.INTER_NEAREST)
            print('testing image' + os.path.join(file_dir, file_list[i]))
            for j in range(i+1 ,len(file_list)):
                imagej = cv2.imread(os.path.join(file_dir, file_list[j]), 0)
                imagej = cv2.resize(imagej, (128, 128), interpolation=cv2.INTER_NEAREST)
                similarity = compare_image(imagei, imagej, mode = mode)
                print("simi=" + str(similarity))
                if similarity >= 1.0 and mode == 'same':
                    os.remove(os.path.join(file_dir, file_list[j]))
                    print('删除' + os.path.join(file_dir, file_list[j]))
                    file_list.pop(j)
                elif similarity < th and mode == 'abs':
                    os.remove(os.path.join(file_dir, file_list[j]))
                    print('删除' + os.path.join(file_dir, file_list[j]))
                    file_list.pop(j)
                else:
                    break
    print("去重后的图像数量:" + str(len(os.listdir(file_dir))))



if __name__ == "__main__":
    mode = "same"
    file_dir = "/home/wl/linshi"
    remove_by_pixel_singledir(file_dir, mode)

后续的改进方案:

基于图片的相似度的计算改进:

更多的相似度准则:MSE距离,leveshtein距离,DNN特征相似度

更多的遍历方案等(文件物理大小,图像尺寸,文件名字)进行预先排序,搜索一定的深度或最近邻。

3、训练、验证、测试集数据集划分

下面的两个代码分别是随机打乱和均匀划分样本的代码

import random
import sys

def shuffle(file_in, file_out):
    fin = open(file_in, 'r')
    fout = open(file_out, 'w')
    lines = fin.readlines()
    random.shuffle(lines)
    for line in lines:
        fout.write(line)

def splittrain_val(fileall, valratio=0.1):
    fileids = fileall.split('.')
    fileid = fileids[len(fileids)-2]
    f = open(fileall)
    ftrain = open(fileid + "_train.txt", 'w')
    fval = open(fileid + "_val.txt", 'w')
    count = 0
    if valratio == 0 or valratio >=1:
        valratio = 0.1
    interval = (int)(1.0/valratio)
    while 1:
        line = f.readline()
        if line:
            count = count + 1
            if count % interval == 0:
                fval.write(line)
            else:
                ftrain.write(line)
        else:
            break


if __name__ == "__main__":
    splittrain_val("/home/wl/linshi/test_files.txt", 0.5)

三、数据标注

1、labelme

在线版本(比较早了):http://labelme.csail.mit.edu/Release3.0

离线版本:https://github.com/wkentaro/labelme

2、其他的一些标注工具

其他的一些标注工具:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-eBj9iVmV-1652447768980)(/home/wl/.config/Typora/typora-user-images/image-20220503104114737.png)]

3、智能标注工具

  • 百度的paddle中的EIseg

  • 基于RNN的半监督交互式工具

    https://github.com/fidler-lab/polyrnn-pp-pytorch

  • 基于GCN的半监督交互式工具

四、数据增强方法

1、基本数据增强方法

为什么做数据增强的方法:增加模型泛化能力方法

  • 显式正则化(模型集成,参数正则化等)
  • 隐式正则化(数据增强,随机梯度下降等)

数据增强方法有哪些

  • 单样本增强:几何操作类和颜色操作类
  • 多样本增强:离散样本点连续化来进行插值拟合

单样本的几何变换:翻转(方向敏感的任务不能用)、旋转(角度敏感的任务不可用)、缩放、仿射等操作(256×256裁剪224×224,相当于数量级增加了32倍)

单样本的颜色操作类:噪声、模糊、颜色扰动、对比度扰动、擦除等

多样本的数据增强——samplepairing:随机抽取两张图片分别经过基础数据增强操作(如随机翻转等)处理后,直接叠加合成一个新的样本,标签为原样本标签中的一种。

多样本的数据增强——Mixup:对图像和标签都进行线性插值

综合变换的库:https://github.com/aleju/imgaug

2、自动数据增强方法

Autoaugment(主要是图像分类任务上来做实验)

学习已有的数据增强操作的组合,不同的任务,需要不同的数据增强操作

  • 准备16个常用的数据操作
  • 从16个中选择5个操作,随机产生使用该操作的概率和相应的幅度,将其成为一个sub-policy,一共产生5个sub-polices
  • 对训练过程中每一个batch的图片,随机采用5个sub-policy操作方法中的一种。
  • 通过模型在验证集上的泛化能力来反馈,使用的优化方法是增强学习方法。
  • 经过80~100个epoch后网络开始学习到有效的sub-policies.
  • 之后串接这5个sub-policies,然后再进行最后的训练。

3、从零生成新的数据

一般是用生成对抗网络来实现的,这里略

五、pytorch数据增强实战(针对图像分类任务)

1、pytorch数据增强接口

  • 最常见的数据增强任务:每一次训练,通过裁剪获得同样大小的图片来输入网络

(1)首先是数据预处理

	norm_mean = [0.485, 0.456, 0.406]
    norm_std = [0.229, 0.224, 0.225]
    train_transform = transforms.Compose([
        # (256)区别:一个256的话是短边resize到256,长边缩小到相应比例,不一定是256
        # (256, 256)的话则是长边和短边都缩小到256
        transforms.Resize((256)),
        # 然后从中心截取(256,256)的矩形
        transforms.CenterCrop(256),
        # 随机再从里面裁剪出来224的
        transforms.RandomCrop(224),
        transforms.RandomHorizontalFlip(p=0.5),
        transforms.ToTensor(),
        transforms.Normalize(norm_mean, norm_std),
    ])

(2)数据增强的接口

见pyTorch中文文档:

pytorch官网地址:https://pytorch.org/

开源翻译的中文的地址:http://pytorch.apachecn.org/

github的地址:https://github.com/apachecn/pytorch-doc-zh

下面是一些案例(面向语义分割的数据增强):

import torchvision.transforms.functional as TF
import random

def my_seg_transforms(image, mask):
    if random.random > 0.5:
        angle = random.randint(-30, 30)
        image = TF.rotate(image, angle)
        mask = TF.rotate(mask, angle)
    return image, mask

2、pytorch数据增强实践(目标检测)

# -*- coding=utf-8 -*-

# 包括:
#     1. 裁剪(需改变bbox)
#     2. 平移(需改变bbox)
#     3. 改变亮度
#     4. 加噪声
#     5. 旋转角度(需要改变bbox)
#     6. 镜像(需要改变bbox)
#     7. cutout
# 注意:
#     random.seed(),相同的seed,产生的随机数是一样的!!
import sys

ros_path = '/opt/ros/kinetic/lib/python2.7/dist-packages'

if ros_path in sys.path:
    sys.path.remove(ros_path)

import cv2
import time
import random
import os
import math
import numpy as np
from skimage.util import random_noise
from skimage import exposure


# 显示带标签显示的图片
def show_pic(img, bboxes=None, labels=None):
    '''
    输入:
        img:图像array
        bboxes:图像的所有boudning box list, 格式为[[x_min, y_min, x_max, y_max]....]
        names:每个box对应的名称
    '''
    #     cv2.imwrite('./1.jpg', img)
    #     img = cv2.imread('./1.jpg')
    img = img / 255
    for i in range(len(bboxes)):
        bbox = bboxes[i]
        x_min = bbox[0]
        y_min = bbox[1]
        x_max = bbox[2]
        y_max = bbox[3]
        cv2.rectangle(img, (int(x_min), int(y_min)), (int(x_max), int(y_max)), (0, 255, 0), 3)
        cv2.putText(img, labels[i], (int(x_min), int(y_min)), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
    cv2.namedWindow('pic', 0)  # 1表示原图
    cv2.moveWindow('pic', 0, 0)
    cv2.resizeWindow('pic', 1200, 800)  # 可视化的图片大小
    cv2.imshow('pic', img)
    if cv2.waitKey(1) == ord('q'):
        cv2.destroyAllWindows()
        sys.exit()


#     cv2.destroyAllWindows()
#     os.remove('./1.jpg')

# 图像均为cv2读取
class DataAugmentForObjectDetection():
    def __init__(self, rotation_rate=0.5, max_rotation_angle=30,
                 crop_rate=0.5, shift_rate=0.5, change_light_rate=0.5,
                 add_noise_rate=0.5, flip_rate=0.5,
                 cutout_rate=0.5, cut_out_length=50, cut_out_holes=1, cut_out_threshold=0.5):
        self.rotation_rate = rotation_rate
        self.max_rotation_angle = max_rotation_angle
        self.crop_rate = crop_rate
        self.shift_rate = shift_rate
        self.change_light_rate = change_light_rate
        self.add_noise_rate = add_noise_rate
        self.flip_rate = flip_rate
        self.cutout_rate = cutout_rate

        self.cut_out_length = cut_out_length
        self.cut_out_holes = cut_out_holes
        self.cut_out_threshold = cut_out_threshold

    # 加噪声
    def _addNoise(self, img):
        '''
        输入:
            img:图像array
        输出:
            加噪声后的图像array,由于输出的像素是在[0,1]之间,所以得乘以255
        '''
        # random.seed(int(time.time()))
        # return random_noise(img, mode='gaussian', seed=int(time.time()), clip=True)*255
        return random_noise(img, mode='gaussian', clip=True) * 255

    # 调整亮度
    def _changeLight(self, img):
        # random.seed(int(time.time()))
        flag = random.uniform(0.5, 1.5)  # flag>1为调暗,小于1为调亮
        return exposure.adjust_gamma(img, flag)

    # cutout
    def _cutout(self, img, bboxes, length=100, n_holes=1, threshold=0.5):
        '''
        原版本:https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py
        Randomly mask out one or more patches from an image.
        Args:
            img : a 3D numpy array,(h,w,c)
            bboxes : 框的坐标
            n_holes (int): Number of patches to cut out of each image.
            length (int): The length (in pixels) of each square patch.
        '''

        def cal_iou(boxA, boxB):
            '''
            boxA, boxB为两个框,返回iou
            boxB为bouding box
            '''

            # determine the (x, y)-coordinates of the intersection rectangle
            xA = max(boxA[0], boxB[0])
            yA = max(boxA[1], boxB[1])
            xB = min(boxA[2], boxB[2])
            yB = min(boxA[3], boxB[3])

            if xB <= xA or yB <= yA:
                return 0.0

            # compute the area of intersection rectangle
            interArea = (xB - xA + 1) * (yB - yA + 1)

            # compute the area of both the prediction and ground-truth
            # rectangles
            boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
            boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)

            # compute the intersection over union by taking the intersection
            # area and dividing it by the sum of prediction + ground-truth
            # areas - the interesection area
            # iou = interArea / float(boxAArea + boxBArea - interArea)
            iou = interArea / float(boxBArea)

            # return the intersection over union value
            return iou

        # 得到h和w
        if img.ndim == 3:
            h, w, c = img.shape
        else:
            _, h, w, c = img.shape

        mask = np.ones((h, w, c), np.float32)

        for n in range(n_holes):

            chongdie = True  # 看切割的区域是否与box重叠太多

            while chongdie:
                y = np.random.randint(h)
                x = np.random.randint(w)

                y1 = np.clip(y - length // 2, 0,
                             h)  # numpy.clip(a, a_min, a_max, out=None), clip这个函数将将数组中的元素限制在a_min, a_max之间,大于a_max的就使得它等于 a_max,小于a_min,的就使得它等于a_min
                y2 = np.clip(y + length // 2, 0, h)
                x1 = np.clip(x - length // 2, 0, w)
                x2 = np.clip(x + length // 2, 0, w)

                chongdie = False
                for box in bboxes:
                    if cal_iou([x1, y1, x2, y2], box) > threshold:
                        chongdie = True
                        break

            mask[y1: y2, x1: x2, :] = 0.

        # mask = np.expand_dims(mask, axis=0)
        img = img * mask

        return img

    # 旋转
    def _rotate_img_bbox(self, img, bboxes, angle=5, scale=1.):
        '''
        参考:https://blog.csdn.net/u014540717/article/details/53301195crop_rate
        输入:
            img:图像array,(h,w,c)
            bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
            angle:旋转角度
            scale:默认1
        输出:
            rot_img:旋转后的图像array
            rot_bboxes:旋转后的boundingbox坐标list
        '''
        # ---------------------- 旋转图像 ----------------------
        w = img.shape[1]
        h = img.shape[0]
        # 角度变弧度
        rangle = np.deg2rad(angle)  # angle in radians
        # now calculate new image width and height
        nw = (abs(np.sin(rangle) * h) + abs(np.cos(rangle) * w)) * scale
        nh = (abs(np.cos(rangle) * h) + abs(np.sin(rangle) * w)) * scale
        # ask OpenCV for the rotation matrix
        rot_mat = cv2.getRotationMatrix2D((nw * 0.5, nh * 0.5), angle, scale)
        # calculate the move from the old center to the new center combined
        # with the rotation
        rot_move = np.dot(rot_mat, np.array([(nw - w) * 0.5, (nh - h) * 0.5, 0]))
        # the move only affects the translation, so update the translation
        # part of the transform
        rot_mat[0, 2] += rot_move[0]
        rot_mat[1, 2] += rot_move[1]
        # 仿射变换
        rot_img = cv2.warpAffine(img, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4)

        # ---------------------- 矫正bbox坐标 ----------------------
        # rot_mat是最终的旋转矩阵
        # 获取原始bbox的四个中点,然后将这四个点转换到旋转后的坐标系下
        rot_bboxes = list()
        for bbox in bboxes:
            xmin = bbox[0]
            ymin = bbox[1]
            xmax = bbox[2]
            ymax = bbox[3]
            point1 = np.dot(rot_mat, np.array([(xmin + xmax) / 2, ymin, 1]))
            point2 = np.dot(rot_mat, np.array([xmax, (ymin + ymax) / 2, 1]))
            point3 = np.dot(rot_mat, np.array([(xmin + xmax) / 2, ymax, 1]))
            point4 = np.dot(rot_mat, np.array([xmin, (ymin + ymax) / 2, 1]))
            # 合并np.array
            concat = np.vstack((point1, point2, point3, point4))
            # 改变array类型
            concat = concat.astype(np.int32)
            # 得到旋转后的坐标
            rx, ry, rw, rh = cv2.boundingRect(concat)
            rx_min = rx
            ry_min = ry
            rx_max = rx + rw
            ry_max = ry + rh
            # 加入list中
            rot_bboxes.append([rx_min, ry_min, rx_max, ry_max])

        return rot_img, rot_bboxes

    # 裁剪
    def _crop_img_bboxes(self, img, bboxes):
        '''
        裁剪后的图片要包含所有的框
        输入:
            img:图像array
            bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
        输出:
            crop_img:裁剪后的图像array
            crop_bboxes:裁剪后的bounding box的坐标list
        '''
        # ---------------------- 裁剪图像 ----------------------
        w = img.shape[1]
        h = img.shape[0]
        x_min = w  # 裁剪后的包含所有目标框的最小的框
        x_max = 0
        y_min = h
        y_max = 0
        for bbox in bboxes:
            x_min = min(x_min, bbox[0])
            y_min = min(y_min, bbox[1])
            x_max = max(x_max, bbox[2])
            y_max = max(y_max, bbox[3])

        d_to_left = x_min  # 包含所有目标框的最小框到左边的距离
        d_to_right = w - x_max  # 包含所有目标框的最小框到右边的距离
        d_to_top = y_min  # 包含所有目标框的最小框到顶端的距离
        d_to_bottom = h - y_max  # 包含所有目标框的最小框到底部的距离

        # 随机扩展这个最小框
        crop_x_min = int(x_min - random.uniform(0, d_to_left))
        crop_y_min = int(y_min - random.uniform(0, d_to_top))
        crop_x_max = int(x_max + random.uniform(0, d_to_right))
        crop_y_max = int(y_max + random.uniform(0, d_to_bottom))

        # 随机扩展这个最小框 , 防止别裁的太小
        # crop_x_min = int(x_min - random.uniform(d_to_left//2, d_to_left))
        # crop_y_min = int(y_min - random.uniform(d_to_top//2, d_to_top))
        # crop_x_max = int(x_max + random.uniform(d_to_right//2, d_to_right))
        # crop_y_max = int(y_max + random.uniform(d_to_bottom//2, d_to_bottom))

        # 确保不要越界
        crop_x_min = max(0, crop_x_min)
        crop_y_min = max(0, crop_y_min)
        crop_x_max = min(w, crop_x_max)
        crop_y_max = min(h, crop_y_max)

        crop_img = img[crop_y_min:crop_y_max, crop_x_min:crop_x_max]

        # ---------------------- 裁剪boundingbox ----------------------
        # 裁剪后的boundingbox坐标计算
        crop_bboxes = list()
        for bbox in bboxes:
            crop_bboxes.append([bbox[0] - crop_x_min, bbox[1] - crop_y_min, bbox[2] - crop_x_min, bbox[3] - crop_y_min])

        return crop_img, crop_bboxes

    # 平移
    def _shift_pic_bboxes(self, img, bboxes):
        '''
        参考:https://blog.csdn.net/sty945/article/details/79387054
        平移后的图片要包含所有的框
        输入:
            img:图像array
            bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
        输出:
            shift_img:平移后的图像array
            shift_bboxes:平移后的bounding box的坐标list
        '''
        # ---------------------- 平移图像 ----------------------
        w = img.shape[1]
        h = img.shape[0]
        x_min = w  # 裁剪后的包含所有目标框的最小的框
        x_max = 0
        y_min = h
        y_max = 0
        for bbox in bboxes:
            x_min = min(x_min, bbox[0])
            y_min = min(y_min, bbox[1])
            x_max = max(x_max, bbox[2])
            y_max = max(y_max, bbox[3])

        d_to_left = x_min  # 包含所有目标框的最大左移动距离
        d_to_right = w - x_max  # 包含所有目标框的最大右移动距离
        d_to_top = y_min  # 包含所有目标框的最大上移动距离
        d_to_bottom = h - y_max  # 包含所有目标框的最大下移动距离

        x = random.uniform(-(d_to_left - 1) / 3, (d_to_right - 1) / 3)
        y = random.uniform(-(d_to_top - 1) / 3, (d_to_bottom - 1) / 3)

        M = np.float32([[1, 0, x], [0, 1, y]])
        # x为向左或右移动的像素值,正为向右负为向左; y为向上或者向下移动的像素值,正为向下负为向上
        try:
            shift_img = cv2.warpAffine(img, M, (img.shape[1], img.shape[0]))
        except Exception as e:
            print("error")

        # ---------------------- 平移boundingbox ----------------------
        shift_bboxes = list()
        for bbox in bboxes:
            shift_bboxes.append([bbox[0] + x, bbox[1] + y, bbox[2] + x, bbox[3] + y])

        return shift_img, shift_bboxes

    # 镜像
    def _filp_pic_bboxes(self, img, bboxes):
        '''
            参考:https://blog.csdn.net/jningwei/article/details/78753607
            平移后的图片要包含所有的框
            输入:
                img:图像array
                bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
            输出:
                flip_img:平移后的图像array
                flip_bboxes:平移后的bounding box的坐标list
        '''
        # ---------------------- 翻转图像 ----------------------
        import copy
        flip_img = copy.deepcopy(img)
        #         if random.random() < 0.5:    #0.5的概率水平翻转,0.5的概率垂直翻转
        horizon = True
        #         else:
        #             horizon = False
        h, w, _ = img.shape
        if horizon:  # 水平翻转
            flip_img = cv2.flip(flip_img, 1)  # 1是水平,-1是水平垂直
        else:
            flip_img = cv2.flip(flip_img, 0)

        # ---------------------- 调整boundingbox ----------------------
        flip_bboxes = list()
        for box in bboxes:
            x_min = box[0]
            y_min = box[1]
            x_max = box[2]
            y_max = box[3]
            if horizon:
                flip_bboxes.append([w - x_max, y_min, w - x_min, y_max])
            else:
                flip_bboxes.append([x_min, h - y_max, x_max, h - y_min])

        return flip_img, flip_bboxes

    def dataAugment(self, img, bboxes):
        '''
        图像增强
        输入:
            img:图像array
            bboxes:该图像的所有框坐标
        输出:
            img:增强后的图像
            bboxes:增强后图片对应的box
        '''
        change_num = 0  # 改变的次数
        print('------')
        while change_num < 1:  # 默认至少有一种数据增强生效
            if random.random() < self.crop_rate:  # 裁剪
                print('裁剪')
                change_num += 1
                img, bboxes = self._crop_img_bboxes(img, bboxes)

            if random.random() > self.rotation_rate:  # 旋转
                print('旋转')
                change_num += 1
                angle = random.uniform(-self.max_rotation_angle, self.max_rotation_angle)
                #                 angle = random.sample([90, 180, 270],1)[0]
                scale = random.uniform(0.7, 0.8)
                img, bboxes = self._rotate_img_bbox(img, bboxes, angle, scale)

            if random.random() < self.shift_rate:  # 平移
                print('平移')
                change_num += 1
                img, bboxes = self._shift_pic_bboxes(img, bboxes)

            if random.random() > self.change_light_rate:  # 改变亮度
                print('亮度')
                change_num += 1
                img = self._changeLight(img)

            if random.random() < self.add_noise_rate:  # 加噪声
                print('加噪声')
                change_num += 1
                img = self._addNoise(img)

            #             if random.random() < self.cutout_rate:  #cutout
            #                 print('cutout')
            #                 change_num += 1
            #                 img = self._cutout(img, bboxes, length=self.cut_out_length, n_holes=self.cut_out_holes, threshold=self.cut_out_threshold)

            #             if random.random() < self.flip_rate:    #翻转
            #                 print('翻转')
            #                 change_num += 1
            #                 img, bboxes = self._filp_pic_bboxes(img, bboxes)
            print('\n')
        # print('------')
        return img, bboxes



# -*- coding=utf-8 -*-
import xml.etree.ElementTree as ET
import xml.dom.minidom as DOC

# 从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]]
def parse_xml(xml_path):
    '''
    输入:
        xml_path: xml的文件路径
    输出:
        从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]]
    '''
    tree = ET.parse(xml_path)
    root = tree.getroot()
    objs = root.findall('object')
    coords = list()
    for ix, obj in enumerate(objs):
        name = obj.find('name').text
        box = obj.find('bndbox')
        x_min = int(float(box[0].text))
        y_min = int(float(box[1].text))
        x_max = int(float(box[2].text))
        y_max = int(float(box[3].text))
        coords.append([x_min, y_min, x_max, y_max, name])
    return coords


import os
from lxml.etree import Element, SubElement, tostring
from xml.dom.minidom import parseString
from PIL import Image


# 保存xml文件函数的核心实现,输入为图片名称image_name,分类category(一个列表,元素与bbox对应),bbox(一个列表,与分类对应),保存路径save_dir ,通道数channel
def save_xml(image_name, category, bbox, file_dir='/home/xbw/wurenting/dataset_3/',
             save_dir='/home/xxx/voc_dataset/Annotations/', channel=3):
    file_path = file_dir
    img = Image.open(file_path + image_name)
    width = img.size[0]
    height = img.size[1]

    node_root = Element('annotation')

    node_folder = SubElement(node_root, 'folder')
    node_folder.text = 'VOC2007'

    node_filename = SubElement(node_root, 'filename')
    node_filename.text = image_name

    node_size = SubElement(node_root, 'size')
    node_width = SubElement(node_size, 'width')
    node_width.text = '%s' % width

    node_height = SubElement(node_size, 'height')
    node_height.text = '%s' % height

    node_depth = SubElement(node_size, 'depth')
    node_depth.text = '%s' % channel

    for i in range(len(bbox)):
        left, top, right, bottom = bbox[i][0], bbox[i][1], bbox[i][2], bbox[i][3]
        node_object = SubElement(node_root, 'object')
        node_name = SubElement(node_object, 'name')
        node_name.text = category[i]
        node_difficult = SubElement(node_object, 'difficult')
        node_difficult.text = '0'
        node_bndbox = SubElement(node_object, 'bndbox')
        node_xmin = SubElement(node_bndbox, 'xmin')
        node_xmin.text = '%s' % left
        node_ymin = SubElement(node_bndbox, 'ymin')
        node_ymin.text = '%s' % top
        node_xmax = SubElement(node_bndbox, 'xmax')
        node_xmax.text = '%s' % right
        node_ymax = SubElement(node_bndbox, 'ymax')
        node_ymax.text = '%s' % bottom

    xml = tostring(node_root, pretty_print=True)
    dom = parseString(xml)

    save_xml = os.path.join(save_dir, image_name.replace('jpg', 'xml'))
    with open(save_xml, 'wb') as f:
        f.write(xml)

    return


import shutil

need_aug_num = 1

dataAug = DataAugmentForObjectDetection()

source_pic_root_path = '/home/wl/import/last_data/VOCdevkit/VOC2007/JPEGImages/'
source_xml_root_path = '/home/wl/import/last_data/VOCdevkit/VOC2007/Annotations/'
img_save_path = '/home/wl/import/last_data/VOCdevkit/VOC2007/aug_img/'
save_dir = '/home/wl/import/last_data/VOCdevkit/VOC2007/aug_label/'

for parent, _, files in os.walk(source_pic_root_path):
    for file in files:
        cnt = 0
        while cnt < need_aug_num:
            pic_path = os.path.join(parent, file)
            xml_path = os.path.join(source_xml_root_path, file[:-4]+'.xml')
            coords = parse_xml(xml_path)        #解析得到box信息,格式为[[x_min,y_min,x_max,y_max,name]]
            coordss = [coord[:4] for coord in coords]
            labels = [coord[4] for coord in coords]
            img = cv2.imread(pic_path)
            show_pic(img, coordss,labels)    # 原图

            auged_img, auged_bboxes = dataAug.dataAugment(img, coordss)
            cnt += 1
            cv2.imwrite(img_save_path+file[:-4]+'_1.jpg',auged_img)
            save_xml(file[:-4]+'_1.jpg',labels,auged_bboxes,file_dir = img_save_path,save_dir=save_dir)
            show_pic(auged_img, auged_bboxes,labels)  # 强化后的图
cv2.destroyAllWindows()






#测试label是否正确
import shutil

# need_aug_num = 1
#
# dataAug = DataAugmentForObjectDetection()
#
# source_pic_root_path = '/home/xbw/darknet_boat/darknet/scripts/VOCdevkit/VOC2007/add_990/990_add/'
# source_xml_root_path = '/home/xbw/darknet_boat/darknet/scripts/VOCdevkit/VOC2007/add_990/990_xml/'
#
# for parent, _, files in os.walk(source_pic_root_path):
#     for file in files:
#         cnt = 0
#         while cnt < need_aug_num:
#             pic_path = os.path.join(parent, file)
#             xml_path = os.path.join(source_xml_root_path, file[:-4]+'.xml')
#             coords = parse_xml(xml_path)        #解析得到box信息,格式为[[x_min,y_min,x_max,y_max,name]]
#             coordss = [coord[:4] for coord in coords]
#             labels = [coord[4] for coord in coords]
#             img = cv2.imread(pic_path)
#             show_pic(img, coordss,labels)    # 原图
#             cnt += 1
# cv2.destroyAllWindows()

3、数据增强开源库imgaug介绍

安装

pip install imgaug

项目地址:https://github.com/aleju/imgaug

里面有相应的数据增强的操作

  • 支持各类数据增强操作

    • affine transformmations , perspective transformations, contrast changes, gaussian noise, dropout of regions, hue/saturation changes, cropping/paddimng, blurring,…
  • 支持的各项视觉任务

    • Image(uint8),Heatmaps(float32),Segmentation Maps(int),Mask(bool),Keypoints/Landmarks(int/float coordinates),Bounding Boxes(int/float coordinates),Polygons(int/float coordinates),Line Strings(int/float coordinates)

如何使用

1、组合一系列增强函数(下面是一个标准用法的例子)

augmenters.Sequential
import imgaug.augmenters as iaa
aug_seq = iaa.Sequential([
    # 仿射变换
    iaa.Affine(translate_px{"x":-40}), 
    # 高斯噪声的变换
    iaa.AdditiveGaussianNoise(scale=0.1*255),random_order=True 
])
# 下面是标准的使用方法
for batch_idx in range(100):
    images = load_batch(batch_idx)
    # 这里记住输入的图像必须是[N,C,H,W]格式的张量,或者图像数组
    images_aug = aug_seq(images = images)
    train_on_images(images_aug)


# 此外还有一些其他的例子
# jpeg压缩
aug = iaa.JpegCompression(compression=(70,99))
# 图像翻转
aug = iaa.Fliplr(0.5)

4、imaug开源库具体的几个例子:

(1)、简单的数据增强的例子

#coding:utf8
import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa

ia.seed(1)

## 创建矩阵(16, 64, 64, 3).
images = np.array(
    [ia.quokka(size=(64, 64)) for _ in range(16)],
    dtype=np.uint8
)

seq = iaa.Sequential([
    iaa.Fliplr(0.5), ## 以0.5的概率进行水平翻转horizontal flips
    iaa.Crop(percent=(0, 0.1)), ## 随机裁剪random crops
    ## 对50%的图片进行高斯模糊,标准差参数取值0~0.5.
    iaa.Sometimes(
        0.5,
        iaa.GaussianBlur(sigma=(0, 0.5))
    ),
    ## 对50%的通道添加高斯噪声
    iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5),
], random_order=True) ## 以上所有操作,使用随机顺序

images_aug = seq(images=images) ## 应用操作增强
grid_image = ia.draw_grid(images_aug,4)

import imageio
imageio.imwrite("example.jpg", grid_image)

(2)、关键点的数据增强

#coding:utf8
import imgaug as ia 
import imgaug.augmenters as iaa 
from imgaug.augmentables import Keypoint, KeypointsOnImage
ia.seed(1)

## 创建图片和关键点
image = ia.quokka(size=(256, 256))
kps = KeypointsOnImage([
    Keypoint(x=65, y=100),
    Keypoint(x=75, y=200),
    Keypoint(x=100, y=100),
    Keypoint(x=200, y=80)
], shape=image.shape)

seq = iaa.Sequential([
    iaa.Multiply((1.2, 1.5)), ## 改变亮度
    iaa.Affine(
        rotate=10,
        scale=(0.5, 0.7)
    )
])

## 对关键点和图片进行增强
image_aug, kps_aug = seq(image=image, keypoints=kps)

for i in range(len(kps.keypoints)):
    before = kps.keypoints[i]
    after = kps_aug.keypoints[i]
    print("Keypoint %d: (%.8f, %.8f) -> (%.8f, %.8f)" % (
        i, before.x, before.y, after.x, after.y)
)

image_before = kps.draw_on_image(image, size=7)
image_after = kps_aug.draw_on_image(image_aug, size=7)

import imageio
imageio.imwrite("before_keypoint.jpg", image_before)
imageio.imwrite("after_keypoint.jpg", image_after)

(3)、目标检测任务

#coding:utf8
import imgaug as ia
import imgaug.augmenters as iaa
from imgaug.augmentables.bbs import BoundingBox, BoundingBoxesOnImage
import cv2

ia.seed(1)

image = ia.quokka(size=(256, 256))

bbs = BoundingBoxesOnImage([
    BoundingBox(x1=65, y1=100, x2=200, y2=150),
    BoundingBox(x1=150, y1=80, x2=200, y2=130)
], shape=image.shape)

seq = iaa.Sequential([
    iaa.Multiply((1.2, 1.5)),
    iaa.Affine(
        translate_px={"x": 40, "y": 60},
        scale=(0.5, 0.7)
    ) ## 对x和y方向分别平移40/60px,尺度缩放为原来的0-70%
])

# 对目标框和图片进行增强
image_aug, bbs_aug = seq(image=image, bounding_boxes=bbs)

for i in range(len(bbs.bounding_boxes)):
    before = bbs.bounding_boxes[i]
    after = bbs_aug.bounding_boxes[i]
    print("BB %d: (%.4f, %.4f, %.4f, %.4f) -> (%.4f, %.4f, %.4f, %.4f)" % (
        i,
        before.x1, before.y1, before.x2, before.y2,
        after.x1, after.y1, after.x2, after.y2)
    )

# 绘制增强前后框
image_before = bbs.draw_on_image(image, size=2)
image_after = bbs_aug.draw_on_image(image_aug, size=2, color=[0, 0, 255])

import imageio
imageio.imwrite("before_boundingbox00.jpg", image_before)
imageio.imwrite("after_boundingbox00.jpg", image_after)

此外需要注意的是,有的框会超出边界,我们需要得到有效框

#coding:utf8
import imgaug as ia
import imgaug.augmenters as iaa
from imgaug.augmentables.bbs import BoundingBox, BoundingBoxesOnImage

ia.seed(1)

image = ia.quokka(size=(256, 256))
bbs = BoundingBoxesOnImage([
    BoundingBox(x1=25, x2=75, y1=25, y2=75),
    BoundingBox(x1=100, x2=150, y1=25, y2=75),
    BoundingBox(x1=175, x2=225, y1=25, y2=75)
], shape=image.shape)

seq = iaa.Affine(translate_px={"x": 120})
image_aug, bbs_aug = seq(image=image, bounding_boxes=bbs)

## 边界填充,1个白色像素,(BY-1)个黑色像素
def pad(image, by):
    image_border1 = ia.pad(image, top=1, right=1, bottom=1, left=1,
                           mode="constant", cval=255)
    image_border2 = ia.pad(image_border1, top=by-1, right=by-1,
                           bottom=by-1, left=by-1,
                           mode="constant", cval=0)
    return image_border2

## 边框绘制函数
GREEN = [0, 255, 0]
ORANGE = [255, 140, 0]
RED = [255, 0, 0]
def draw_bbs(image, bbs, border):
    image_border = pad(image, border)
    for bb in bbs.bounding_boxes:
        if bb.is_fully_within_image(image.shape):
            color = GREEN
        elif bb.is_partly_within_image(image.shape):
            color = ORANGE
        else:
            color = RED
        image_border = bb.shift(left=border, top=border)\
                         .draw_on_image(image_border, size=2, color=color)

    return image_border

image_before = draw_bbs(image, bbs, 100)
image_after1 = draw_bbs(image_aug, bbs_aug, 100)
image_after2 = draw_bbs(image_aug, bbs_aug.remove_out_of_image(), 100)
image_after3 = draw_bbs(image_aug, bbs_aug.remove_out_of_image().clip_out_of_image(), 100)

import imageio
imageio.imwrite("normal_boundingbox.jpg", image_before)
imageio.imwrite("after1_boundingbox.jpg", image_after1)
imageio.imwrite("after2_boundingbox.jpg", image_after2)
imageio.imwrite("after3_boundingbox.jpg", image_after3)

(4)、分割数据增强

#coding:utf8
import imageio
import numpy as np
import imgaug as ia
import imgaug.augmenters as iaa
from imgaug.augmentables.segmaps import SegmentationMapsOnImage

ia.seed(1)

image = ia.quokka(size=(128, 128), extract="square")

segmap = np.zeros((128, 128, 1), dtype=np.int32)
segmap[28:71, 35:85, 0] = 1
segmap[10:25, 30:45, 0] = 2
segmap[10:25, 70:85, 0] = 3
segmap[10:110, 5:10, 0] = 4
segmap[118:123, 10:110, 0] = 5
segmap = SegmentationMapsOnImage(segmap, shape=image.shape)

# 数据增强操作
seq = iaa.Sequential([
    iaa.Dropout([0.05, 0.2]),      # 随机丢掉 5% or 20%的像素
    iaa.Sharpen((0.0, 1.0)),       # 锐化操作sharpen
    iaa.Affine(rotate=(-45, 45)),  # 旋转-45到45度
    iaa.ElasticTransformation(alpha=50, sigma=5)  # 应用ElasticTransformation操作
], random_order=True)

# 对分割掩膜和图片进行增强
images_aug = []
segmaps_aug = []
for _ in range(5):
    images_aug_i, segmaps_aug_i = seq(image=image, segmentation_maps=segmap)
    images_aug.append(images_aug_i)
    segmaps_aug.append(segmaps_aug_i)

cells = []
for image_aug, segmap_aug in zip(images_aug, segmaps_aug):
    cells.append(image)                                         # column 1
    cells.append(segmap.draw_on_image(image)[0])                # column 2
    cells.append(image_aug)                                     # column 3
    cells.append(segmap_aug.draw_on_image(image_aug)[0])        # column 4
    cells.append(segmap_aug.draw(size=image_aug.shape[:2])[0])  # column 5

grid_image = ia.draw_grid(cells, cols=5)
imageio.imwrite("example_segmaps.jpg", grid_image)

(5)、bbox计算iou的例子

import numpy as np
import imgaug as ia
from imgaug.augmentables.bbs import BoundingBox


ia.seed(1)

# Define image with two bounding boxes.
image = ia.quokka(size=(256, 256))
bb1 = BoundingBox(x1=50, x2=100, y1=25, y2=75)
bb2 = BoundingBox(x1=75, x2=125, y1=50, y2=100)

# Compute intersection, union and IoU value
# Intersection and union are both bounding boxes. They are here
# decreased/increased in size purely for better visualization.
bb_inters = bb1.intersection(bb2).extend(all_sides=-1)
bb_union = bb1.union(bb2).extend(all_sides=2)
iou = bb1.iou(bb2)

# Draw bounding boxes, intersection, union and IoU value on image.
image_bbs = np.copy(image)
image_bbs = bb1.draw_on_image(image_bbs, size=2, color=[0, 255, 0])
image_bbs = bb2.draw_on_image(image_bbs, size=2, color=[0, 255, 0])
image_bbs = bb_inters.draw_on_image(image_bbs, size=2, color=[255, 0, 0])
image_bbs = bb_union.draw_on_image(image_bbs, size=2, color=[0, 0, 255])
image_bbs = ia.draw_text(
    image_bbs, text="IoU=%.2f" % (iou,),
    x=bb_union.x2+10, y=bb_union.y1+bb_union.height//2,
    color=[255, 255, 255], size=13
)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/280605.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Grafana监控数据可视化

Grafana 是一个可视化面板&#xff0c;有着非常漂亮的图表和布局展示&#xff0c;功能齐全的度量仪表盘和图形编辑器&#xff0c;支持 Graphite、zabbix、InfluxDB、Prometheus、OpenTSDB、Elasticsearch 等作为数据源&#xff0c;比 Prometheus 自带的图表展示功能强大太多&am…

K8S容器的一则故障记录

一、故障现象 XXX反馈说某某业务服务异常&#xff0c;无法启动&#xff0c;需要进行协助排查。经常会接到这样一个需求&#xff0c;一开始无法清楚知道具体什么问题&#xff0c;需要跟一线运维人员详细做沟通&#xff0c;了解故障问题的细节。 根据一线运维人员的反馈&#xff…

unity随笔- 2D动画制作animation

1.前提&#xff1a;将连续的动作图片制为图集。 2.在Hierarchy中选中含图集的sprites对象。 3.打开animator组件&#xff0c;点击create创建动画组件 4.添加property选择sprite 5.选择图集需要的部分加入animation。&#xff08;animation使用见animator&#xff09;

Dragonfly-SM X9H核心板 SM6700Q PMIC供电配置烧录介绍

一、概述 核心板采用 1 片芯迈 SM6700Q PMIC 芯片搭配 3 片 MPQ8861 DCDC 电源芯片和 2 片安森美 LDO&#xff0c;型号分别 NCV8164ASN180T1G 和 NCV8130BMX080TCG 为系统供电。 二、核心板供电框图 系统供电主要是 MCU 的 RTC 域、安全域、应用域的供电&#xff0c;其中 RTC 域…

攻防世界easyphp解题

攻防世界easyphp解题 <?php highlight_file(__FILE__); $key1 0; $key2 0;$a $_GET[a]; $b $_GET[b];if(isset($a) && intval($a) > 6000000 && strlen($a) < 3){if(isset($b) && 8b184b substr(md5($b),-6,6)){$key1 1;}else{die(&q…

【Vue2+3入门到实战】(15)VUE路由入门声明式导航的基本使用与详细代码示例

目录 一、声明式导航-导航链接1.需求2.解决方案3.通过router-link自带的两个样式进行高亮4.总结 二、声明式导航-两个类名1.router-link-active2.router-link-exact-active3.在地址栏中输入二级路由查看类名的添加4.总结 三、声明式导航-自定义类名&#xff08;了解&#xff09…

【华为机试】2023年真题B卷(python)-解密犯罪时间

一、题目 题目描述&#xff1a; 警察在侦破一个案件时&#xff0c;得到了线人给出的可能犯罪时间&#xff0c;形如 “HH:MM” 表示的时刻。 根据警察和线人的约定&#xff0c;为了隐蔽&#xff0c;该时间是修改过的&#xff0c;解密规则为&#xff1a; 利用当前出现过的数字&am…

大创项目推荐 深度学习交通车辆流量分析 - 目标检测与跟踪 - python opencv

文章目录 0 前言1 课题背景2 实现效果3 DeepSORT车辆跟踪3.1 Deep SORT多目标跟踪算法3.2 算法流程 4 YOLOV5算法4.1 网络架构图4.2 输入端4.3 基准网络4.4 Neck网络4.5 Head输出层 5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; *…

基于轻量级GhostNet模型开发构建生活场景下生活垃圾图像识别系统

轻量级识别模型在我们前面的博文中已经有过很多实践了&#xff0c;感兴趣的话可以自行移步阅读&#xff1a; 《移动端轻量级模型开发谁更胜一筹&#xff0c;efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》 《基…

论文阅读<Contrastive Learning-based Robust Object Detection under Smoky Conditions>

论文链接&#xff1a;https://openaccess.thecvf.com/content/CVPR2022W/UG2/papers/Wu_Contrastive_Learning-Based_Robust_Object_Detection_Under_Smoky_Conditions_CVPRW_2022_paper.pdf Abstract 目标检测是指有效地找出图像中感兴趣的目标&#xff0c;然后准确地确定它们…

阶段性复习(三)

if后面是赋值符&#xff0c;所以最后的值是a for&#xff08;&#xff1b; &#xff1b;&#xff09;是死循环 大小写转换 在这道题中&#xff0c;通过分析可知&#xff0c;在小写转换大写的过程中&#xff0c;需要满足的条件是word0&#xff0c;同时是小写&#xff0c;而在第…

UV胶有缺点吗?

UV胶具有许多优势&#xff0c;有什么缺点&#xff1a; 感光性 UV胶的固化是通过紫外光照射完成的&#xff0c;因此需要确保所有焊点都能被充分照射到。 2.固化深度 UV胶的紫外线透过深度有限&#xff0c;如果需要厚度过大&#xff0c;需要分多层次涂覆后再固化。 3&#xf…

【GOLANG】使用插件 Goanno 的方式来对方法、接口、结构体注释模板配置

直接 使用插件 Goanno 的方式来对方法、接口、结构体注释模板配置 1、简单安装 Goanno 插件 File->Settings->Plugins , 搜索 Goanno Normal Method 配置内容如下&#xff1a; // Title ${function_name} // Description ${todo} // Author mumu ${date} ${time} // Par…

Vue常见面试问答

vue响应式数据 vue2 Vue2 的对象数据是通过 Object.defineProperty 对每个属性进行监听&#xff0c;当对属性进行读取的时候&#xff0c;就会触发 getter&#xff0c;对属性进行设置的时候&#xff0c;就会触发 setter。 /** * 这里的函数 defineReactive 用来对 Object.def…

Zookeeper无法启动,报“Unable to load database on disk”

转载说明&#xff1a;如果您喜欢这篇文章并打算转载它&#xff0c;请私信作者取得授权。感谢您喜爱本文&#xff0c;请文明转载&#xff0c;谢谢。 问题描述&#xff1a; 测试环境部署zookeeper的服务器磁盘满了&#xff0c;引起服务异常&#xff0c;将zookeeper进程杀掉之后&…

vscode软件安装步骤

目录 一、下载软件安装包 二、运行安装包后 一、下载软件安装包 打开vscode官方网址&#xff0c;找到下载界面 链接如下&#xff1a;Download Visual Studio Code - Mac, Linux, Windows 我是windows电脑&#xff0c;各位小伙伴自己选择合适的版本&#xff0c;点击下载按钮…

<JavaEE> 协议格式 -- 传输层协议 TCP

目录 一、TCP协议格式长啥样&#xff1f; 二、TCP协议属性解释 1&#xff09;源端口号/目的端口号 2&#xff09;序号/确认序号 3&#xff09;TCP报头长度 4&#xff09;保留位 5&#xff09;标志位 6&#xff09;窗口大小 7&#xff09;校验和 8&#xff09;紧急指针…

56.网游逆向分析与插件开发-游戏增加自动化助手接口-通过UI分析自动药水设定功能

内容来源于&#xff1a;易道云信息技术研究院VIP课 上一节内容&#xff1a;自动药水设定功能的逆向分析-CSDN博客 这次是假设没有之前的思路积累的话&#xff0c;怎样去找按钮事件。 通过ui当做切入点去做&#xff0c;就是一个窗口它显示不显示&#xff0c;游戏怎样控制这个…

【unity中使用高度图创建地图】

unity中使用高度图创建地图 插件 讲解案例为unity2022版本 这个是插件地址 也可以在资源商店中搜索 terrain-tools 介绍 Terrain Tools入门Terrain Tools是一个软件包&#xff0c;你可以选择将其添加到Unity 2019.1或更高版本中的任何项目中。要将该软件包添加到你的项目…

2023年03月21日_chatgpt宕机事件的简单回顾

你能想象吗 ChatGPT挂了 昨天半夜呢 来自全球各地的用户纷纷发现 ChatGPT的网站弹出了报错警告的信息 然后立即就无法使用了 即使是有特权的plus账户也未能幸免 一时之间呢 chatgptdown的话题在Twitter刷屏 不少重度的用户表示很着急 有的用户说呢没了ChatGPT 这工作…