大创项目推荐 深度学习交通车辆流量分析 - 目标检测与跟踪 - python opencv

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 DeepSORT车辆跟踪
    • 3.1 Deep SORT多目标跟踪算法
    • 3.2 算法流程
  • 4 YOLOV5算法
    • 4.1 网络架构图
    • 4.2 输入端
    • 4.3 基准网络
    • 4.4 Neck网络
    • 4.5 Head输出层
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习得交通车辆流量分析 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

在智能交通系统中,利用监控视频进行车流量统计是一个研究热点。交管部门通过实时、准确地采集车流量信息,可以合理分配交通资源、提高道路通行效率,有效预防和应对城市交通拥堵问题。同时随着车辆数量的增加,交通违章现象频出,例如渣土车违规上道、工程车辆违规进入城市主干道、车辆停放在消防通道等,这一系列的交通违规行为给城市安全埋下了巨大隐患。对于交通管理者而言,加强对特定车辆的识别和分类管理尤为重要。然而,在实际监控识别车辆时,相当一部分车辆图像存在图像不全或者遮挡问题,极大降低了监控识别准确率。如何准确识别车辆,是当前车辆检测的重点。

根据实际情况,本文将车辆分为家用小轿车、货车两类进行车辆追踪和速度识别。

2 实现效果

可识别图片视频中的轿车和货车数量,检测行驶速度并实时显示。

在这里插入图片描述

关键代码

# 目标检测
    def yolo_detect(self, im):

        img = self.preprocess(im)

        pred = self.m(img, augment=False)[0]
        pred = pred.float()
        pred = non_max_suppression(pred, self.conf_thres, self.iou_thres )

        pred_boxes = []
        for det in pred:

            if det is not None and len(det):
                det[:, :4] = scale_coords(
                    img.shape[2:], det[:, :4], im.shape).round()

                for *x, conf, cls_id in det:
                    lbl = self.names[int(cls_id)]
                    x1, y1 = int(x[0]), int(x[1])
                    x2, y2 = int(x[2]), int(x[3])
                    pred_boxes.append(
                        (x1, y1, x2, y2, lbl, conf))

        return pred_boxes

3 DeepSORT车辆跟踪

多目标在线跟踪算法 SORT(simple online andrealtime
tracking)利用卡尔曼滤波和匈牙利匹配,将跟踪结果和检测结果之间的IoU作为代价矩阵,实现了一种简单高效并且实用的跟踪范式。但是 SORT
算法的缺陷在于所使用的关联度量(association
metric)只有在状态估计不确定性较低的情况下有效,因此算法执行时会出现大量身份切换现象,当目标被遮挡时跟踪失败。为了改善这个问题,Deep SORT
将目标的运动信息和外观信息相结合作为关联度量,改善目标消失后重新出现导致的跟踪失败问题。

3.1 Deep SORT多目标跟踪算法

跟踪处理和状态估计

Deep SORT
利用检测器的结果初始化跟踪器,每个跟踪器都会设置一个计数器,在卡尔曼滤波之后计数器累加,当预测结果和检测结果成功匹配时,该计数器置为0。在一段时间内跟踪器没有匹配到合适的检测结果,则删除该跟踪器。Deep
SORT 为每一帧中新出现的检测结果分配跟踪器,当该跟踪器连续3帧的预测结果都能匹配检测结果,则确认是出现了新的轨迹,否则删除该跟踪器。

Deep SORT使用 8维状态空间在这里插入图片描述描述目标的状态和在图像坐标系中的运动信息。在这里插入图片描述表示目标检测框的中心坐标在这里插入图片描述分别表示检测框的宽高比例和高度,在这里插入图片描述表示前面四个参数在图像坐标中的相对速度。算法使用具有恒定速度模型和线性观测模型的标准卡尔曼滤波器,将检测框参数在这里插入图片描述作为对象状态的直接观测值。

分配问题

Deep SORT
结合运动信息和外观信息,使用匈牙利算法匹配预测框和跟踪框。对于运动信息,算法使用马氏距离描述卡尔曼滤波预测结果和检测器结果的关联程度,如公式中:

在这里插入图片描述

在这里插入图片描述分别表示第 j 个检测结果和第 i
个预测结果的状态向量,Si 表示检测结果和平均跟踪结

当目标运动信息不确定性较低的时候,马氏距离是一种合适的关联因子,但是当目标遮挡或者镜头视角抖动时,仅使用马氏距离关联会导致目标身份切换。因此考虑加入外观信息,对每一个检测框
dj 计算出对应的外观特征描述符 rj ,并且设置在这里插入图片描述。对于每一个跟踪轨迹 k
设置特征仓库在这里插入图片描述,用来保存最近100条目标成功关联的特征描述符,在这里插入图片描述。计算第 i 个跟踪框和第 j
个检测框最小余弦距离,如公式:

在这里插入图片描述

在这里插入图片描述小于指定的阈值,认为关联成功。

马氏距离在短时预测情况下可以提供可靠的目标位置信息,使用外观特征的余弦相似度可以在目标遮挡又重新出现时恢复目标
ID,为了使两种度量的优势互补,使用线性加权的方式进行结合:

在这里插入图片描述

3.2 算法流程

Deepsort算法的工作流程如下图所示:

在这里插入图片描述

源码流程

主函数部分整体逻辑是比较简单的,首先是将命令行参数进行解析,解析的内容包括,MOTChanlleng序列文件所在路径、需要检测文件所在的目录等一系列参数。解析之后传递给run方法,开始运行。

在这里插入图片描述

进入run函数之后,首先会收集流信息,包括图片名称,检测结果以及置信度等,后续会将这些流信息传入到检测框生成函数中,生成检测框列表。然后会初始化metric对象,metric对象简单来说就是度量方式,在这个地方我们可以选择两种相似度的度量方式,第一种叫做余弦相似度度量,另一种叫做欧拉相似度度量。通过metric对象我们来初始化追踪器。
在这里插入图片描述

接着根据display参数开始生成对应的visuializer,如果选择将检测结果进行可视化展示,那么便会生成Visualization对象,我从这个类中可以看到,它主要是调用opencv
image
viewer来讲追踪的结果进行展示。如果display是false则会生成一个NoVisualization对象,它一个虚拟可视化对象,它以给定的顺序循环遍历所有帧以更新跟踪器,而无需执行任何可视化。两者主要区别其实就是是否调用opencv将图片展示出来。其实前边我们所做的一系列工作可以说都是准备的工作,实际上核心部分就是在执行这个run方法之后。此处我们可以看到,在run方法中传入了一个frame_callback函数,这个frame_callback函数可以说是整个算法的核心部分,每一帧的图片都会执行该函数。
在这里插入图片描述

4 YOLOV5算法

6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:

在这里插入图片描述

4.1 网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

4.2 输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

  • Mosaic数据增强:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错

在这里插入图片描述

4.3 基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

4.4 Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述

在这里插入图片描述

FPN+PAN的结构

在这里插入图片描述

这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

4.5 Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:


①==>40×40×255

②==>20×20×255

③==>10×10×255

在这里插入图片描述

相关代码

class Detect(nn.Module):
    stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()
                if self.inplace:
                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
        else:
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
        anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
            .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
        return grid, anchor_grid

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/280587.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于轻量级GhostNet模型开发构建生活场景下生活垃圾图像识别系统

轻量级识别模型在我们前面的博文中已经有过很多实践了,感兴趣的话可以自行移步阅读: 《移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》 《基…

论文阅读<Contrastive Learning-based Robust Object Detection under Smoky Conditions>

论文链接:https://openaccess.thecvf.com/content/CVPR2022W/UG2/papers/Wu_Contrastive_Learning-Based_Robust_Object_Detection_Under_Smoky_Conditions_CVPRW_2022_paper.pdf Abstract 目标检测是指有效地找出图像中感兴趣的目标,然后准确地确定它们…

阶段性复习(三)

if后面是赋值符,所以最后的值是a for(; ;)是死循环 大小写转换 在这道题中,通过分析可知,在小写转换大写的过程中,需要满足的条件是word0,同时是小写,而在第…

UV胶有缺点吗?

UV胶具有许多优势,有什么缺点: 感光性 UV胶的固化是通过紫外光照射完成的,因此需要确保所有焊点都能被充分照射到。 2.固化深度 UV胶的紫外线透过深度有限,如果需要厚度过大,需要分多层次涂覆后再固化。 3&#xf…

【GOLANG】使用插件 Goanno 的方式来对方法、接口、结构体注释模板配置

直接 使用插件 Goanno 的方式来对方法、接口、结构体注释模板配置 1、简单安装 Goanno 插件 File->Settings->Plugins , 搜索 Goanno Normal Method 配置内容如下: // Title ${function_name} // Description ${todo} // Author mumu ${date} ${time} // Par…

Vue常见面试问答

vue响应式数据 vue2 Vue2 的对象数据是通过 Object.defineProperty 对每个属性进行监听,当对属性进行读取的时候,就会触发 getter,对属性进行设置的时候,就会触发 setter。 /** * 这里的函数 defineReactive 用来对 Object.def…

Zookeeper无法启动,报“Unable to load database on disk”

转载说明:如果您喜欢这篇文章并打算转载它,请私信作者取得授权。感谢您喜爱本文,请文明转载,谢谢。 问题描述: 测试环境部署zookeeper的服务器磁盘满了,引起服务异常,将zookeeper进程杀掉之后&…

vscode软件安装步骤

目录 一、下载软件安装包 二、运行安装包后 一、下载软件安装包 打开vscode官方网址,找到下载界面 链接如下:Download Visual Studio Code - Mac, Linux, Windows 我是windows电脑,各位小伙伴自己选择合适的版本,点击下载按钮…

<JavaEE> 协议格式 -- 传输层协议 TCP

目录 一、TCP协议格式长啥样? 二、TCP协议属性解释 1)源端口号/目的端口号 2)序号/确认序号 3)TCP报头长度 4)保留位 5)标志位 6)窗口大小 7)校验和 8)紧急指针…

56.网游逆向分析与插件开发-游戏增加自动化助手接口-通过UI分析自动药水设定功能

内容来源于:易道云信息技术研究院VIP课 上一节内容:自动药水设定功能的逆向分析-CSDN博客 这次是假设没有之前的思路积累的话,怎样去找按钮事件。 通过ui当做切入点去做,就是一个窗口它显示不显示,游戏怎样控制这个…

【unity中使用高度图创建地图】

unity中使用高度图创建地图 插件 讲解案例为unity2022版本 这个是插件地址 也可以在资源商店中搜索 terrain-tools 介绍 Terrain Tools入门Terrain Tools是一个软件包,你可以选择将其添加到Unity 2019.1或更高版本中的任何项目中。要将该软件包添加到你的项目…

2023年03月21日_chatgpt宕机事件的简单回顾

你能想象吗 ChatGPT挂了 昨天半夜呢 来自全球各地的用户纷纷发现 ChatGPT的网站弹出了报错警告的信息 然后立即就无法使用了 即使是有特权的plus账户也未能幸免 一时之间呢 chatgptdown的话题在Twitter刷屏 不少重度的用户表示很着急 有的用户说呢没了ChatGPT 这工作…

uniapp打包Android、Ios、微信小程序

首先我们需要在我们的代码中,把我们所要用到的配置信息配置好,在检查一下我们测试的内容是否有打开(取消注释),在检查一下我们的版本信息是否正确,查看一下接口ip是否是正式线 这里的配置信息一定要配置好…

时序分解 | Matlab实现贝叶斯变化点检测与时间序列分解

时序分解 | Matlab实现贝叶斯变化点检测与时间序列分解 目录 时序分解 | Matlab实现贝叶斯变化点检测与时间序列分解效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现贝叶斯变化点检测与时间序列分解 1.Matlab实现贝叶斯变化点检测与时间序列分解,完…

产品经理学习-策略产品指标

目录: 数据指标概述 通用指标介绍 Web端常用指标 移动端常用指标 如何选择一个合适的数据指标 数据指标概述 指标是衡量目标的一个参数,指一项活动中预期达到的指标、目标等,一般用数据表示,因此又称为数据指标;…

python+django在线学习教学辅助作业系统gp6yp

本课题使用Python语言进行开发。基于web,代码层面的操作主要在PyCharm中进行,将系统所使用到的表以及数据存储到MySQL数据库中 技术栈 后端:pythondjango 前端:vue.jselementui 框架:django/flask Python版本:python3.…

【计算机毕业设计】python+django数码电子论坛系统设计与实现

本系统主要包括管理员和用户两个角色组成;主要包括:首页、个人中心、用户管理、分类管理、数码板块管理、数码评价管理、数码论坛管理、畅聊板块管理、系统管理等功能的管理系统。 后端:pythondjango 前端:vue.jselementui 框架&a…

SpringValidation自定义注解以及分组校验

SpringValidation的参数校验使用可参考:【SpringMVC应用篇】Spring Validation 参数校验-CSDN博客 目录 1. 引入依赖 2. 自定义注解校验 2.1 创建Validation类 2.2 创建注解对象 2.3 使用注解 3. 分组校验 3.1 实体类内部定义接口 3.2 在参数上指定分组 1. …

leetcode 315. 计算右侧小于当前元素的个数(hard)【小林优质解法】

链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 代码: class Solution {int[]counts; //用来存储结果int[]index; //用来绑定数据和原下标int[]helpNums; //用于辅助排序 nums 数组int[]helpIndex; //用于辅助排序 i…

学习动态规划不同路径、最小路径和、打家劫舍、打家劫舍iii

学习动态规划|不同路径、最小路径和、打家劫舍、打家劫舍iii 62 不同路径 动态规划,dp[i][j]表示从左上角到(i,j)的路径数量dp[i][j] dp[i-1][j] dp[i][j-1] import java.util.Arrays;/*** 路径数量* 动态规划,dp[i][j]表示从左上角到(i,j)的路径数量…