基于轻量级GhostNet模型开发构建生活场景下生活垃圾图像识别系统

轻量级识别模型在我们前面的博文中已经有过很多实践了,感兴趣的话可以自行移步阅读:

《移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》

《基于Pytorch框架的轻量级卷积神经网络垃圾分类识别系统》

《基于轻量级卷积神经网络模型实践Fruits360果蔬识别——自主构建CNN模型、轻量化改造设计lenet、alexnet、vgg16、vgg19和mobilenet共六种CNN模型实验对比分析》

《探索轻量级模型性能上限,基于GhostNet模型开发构建多商品细粒度图像识别系统》

《基于轻量级神经网络GhostNet开发构建的200种鸟类细粒度识别分析系统》

《基于MobileNet的轻量级卷积神经网络实现玉米螟虫不同阶段识别分析》

《基于轻量级模型GHoshNet开发构建眼球眼疾识别分析系统,构建全方位多层次参数对比分析实验》

《python基于轻量级卷积神经网络模型ShuffleNetv2开发构建辣椒病虫害图像识别系统》

《基于轻量级神经网络GhostNet开发构建光伏太阳能电池缺陷图像识别分析系统》

《python开发构建轻量级卷积神经网络模型实现手写甲骨文识别系统》

《基于轻量级GhostNet模型开发构建工业生产制造场景下滚珠丝杠传动表面缺陷图像识别系统》

本文的核心思想是像基于GhostNet来开发构建生活场景下的生活垃圾图像识别系统,首先看下实例效果:

GhostNet 是一种轻量级卷积神经网络,是专门为移动设备上的应用而设计的。其主要构件是 Ghost 模块,一种新颖的即插即用模块。Ghost 模块设计的初衷是使用更少的参数来生成更多特征图 (generate more features by using fewer parameters)。

官方论文地址在这里,如下所示:

官方也开源了项目,地址在这里,如下所示:

可以详细阅读官方的代码实例即可,之后可以基于自己的数据集来开发构建模型即可。

这里给出GhostNet的核心实现部分,如下所示:

class GhostNet(nn.Module):
    def __init__(self, cfgs, num_classes=1000, width_mult=1.0):
        super(GhostNet, self).__init__()
        self.cfgs = cfgs
        output_channel = _make_divisible(16 * width_mult, 4)
        layers = [
            nn.Sequential(
                nn.Conv2d(3, output_channel, 3, 2, 1, bias=False),
                nn.BatchNorm2d(output_channel),
                nn.ReLU(inplace=True),
            )
        ]
        input_channel = output_channel
        block = GhostBottleneck
        for k, exp_size, c, use_se, s in self.cfgs:
            output_channel = _make_divisible(c * width_mult, 4)
            hidden_channel = _make_divisible(exp_size * width_mult, 4)
            layers.append(
                block(input_channel, hidden_channel, output_channel, k, s, use_se)
            )
            input_channel = output_channel
        self.features = nn.Sequential(*layers)
        output_channel = _make_divisible(exp_size * width_mult, 4)
        self.squeeze = nn.Sequential(
            nn.Conv2d(input_channel, output_channel, 1, 1, 0, bias=False),
            nn.BatchNorm2d(output_channel),
            nn.ReLU(inplace=True),
            nn.AdaptiveAvgPool2d((1, 1)),
        )
        input_channel = output_channel
        output_channel = 1280
        self.classifier = nn.Sequential(
            nn.Linear(input_channel, output_channel, bias=False),
            nn.BatchNorm1d(output_channel),
            nn.ReLU(inplace=True),
            nn.Dropout(0.2),
            nn.Linear(output_channel, num_classes),
        )
        self._initialize_weights()
 
    def forward(self, x, need_fea=False):
        if need_fea:
            features, features_fc = self.forward_features(x, need_fea)
            x = self.classifier(features_fc)
            return features, features_fc, x
        else:
            x = self.forward_features(x)
            x = self.classifier(x)
            return x
 
    def forward_features(self, x, need_fea=False):
        if need_fea:
            input_size = x.size(2)
            scale = [4, 8, 16, 32]
            features = [None, None, None, None]
            for idx, layer in enumerate(self.features):
                x = layer(x)
                if input_size // x.size(2) in scale:
                    features[scale.index(input_size // x.size(2))] = x
            x = self.squeeze(x)
            return features, x.view(x.size(0), -1)
        else:
            x = self.features(x)
            x = self.squeeze(x)
            return x.view(x.size(0), -1)
 
    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
 
    def cam_layer(self):
        return self.features[-1]

简单看下数据集情况:

数据集分布可视化如下所示:

基于tsne算法实现了分布的可视化,可以清楚地看到:两类数据区分度还是很明显的。

整体模型训练识别的难度也是相对较低的,接下来看下loss走势:

acc曲线:

可以看到:模型的精度非常高了。

基于常用的数据增强算法来实现对原始图像数据的增强处理效果实例如下所示:

混淆矩阵如下:

感兴趣的话也都可以动手实践下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/280586.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

论文阅读<Contrastive Learning-based Robust Object Detection under Smoky Conditions>

论文链接:https://openaccess.thecvf.com/content/CVPR2022W/UG2/papers/Wu_Contrastive_Learning-Based_Robust_Object_Detection_Under_Smoky_Conditions_CVPRW_2022_paper.pdf Abstract 目标检测是指有效地找出图像中感兴趣的目标,然后准确地确定它们…

阶段性复习(三)

if后面是赋值符,所以最后的值是a for(; ;)是死循环 大小写转换 在这道题中,通过分析可知,在小写转换大写的过程中,需要满足的条件是word0,同时是小写,而在第…

UV胶有缺点吗?

UV胶具有许多优势,有什么缺点: 感光性 UV胶的固化是通过紫外光照射完成的,因此需要确保所有焊点都能被充分照射到。 2.固化深度 UV胶的紫外线透过深度有限,如果需要厚度过大,需要分多层次涂覆后再固化。 3&#xf…

【GOLANG】使用插件 Goanno 的方式来对方法、接口、结构体注释模板配置

直接 使用插件 Goanno 的方式来对方法、接口、结构体注释模板配置 1、简单安装 Goanno 插件 File->Settings->Plugins , 搜索 Goanno Normal Method 配置内容如下: // Title ${function_name} // Description ${todo} // Author mumu ${date} ${time} // Par…

Vue常见面试问答

vue响应式数据 vue2 Vue2 的对象数据是通过 Object.defineProperty 对每个属性进行监听,当对属性进行读取的时候,就会触发 getter,对属性进行设置的时候,就会触发 setter。 /** * 这里的函数 defineReactive 用来对 Object.def…

Zookeeper无法启动,报“Unable to load database on disk”

转载说明:如果您喜欢这篇文章并打算转载它,请私信作者取得授权。感谢您喜爱本文,请文明转载,谢谢。 问题描述: 测试环境部署zookeeper的服务器磁盘满了,引起服务异常,将zookeeper进程杀掉之后&…

vscode软件安装步骤

目录 一、下载软件安装包 二、运行安装包后 一、下载软件安装包 打开vscode官方网址,找到下载界面 链接如下:Download Visual Studio Code - Mac, Linux, Windows 我是windows电脑,各位小伙伴自己选择合适的版本,点击下载按钮…

<JavaEE> 协议格式 -- 传输层协议 TCP

目录 一、TCP协议格式长啥样? 二、TCP协议属性解释 1)源端口号/目的端口号 2)序号/确认序号 3)TCP报头长度 4)保留位 5)标志位 6)窗口大小 7)校验和 8)紧急指针…

56.网游逆向分析与插件开发-游戏增加自动化助手接口-通过UI分析自动药水设定功能

内容来源于:易道云信息技术研究院VIP课 上一节内容:自动药水设定功能的逆向分析-CSDN博客 这次是假设没有之前的思路积累的话,怎样去找按钮事件。 通过ui当做切入点去做,就是一个窗口它显示不显示,游戏怎样控制这个…

【unity中使用高度图创建地图】

unity中使用高度图创建地图 插件 讲解案例为unity2022版本 这个是插件地址 也可以在资源商店中搜索 terrain-tools 介绍 Terrain Tools入门Terrain Tools是一个软件包,你可以选择将其添加到Unity 2019.1或更高版本中的任何项目中。要将该软件包添加到你的项目…

2023年03月21日_chatgpt宕机事件的简单回顾

你能想象吗 ChatGPT挂了 昨天半夜呢 来自全球各地的用户纷纷发现 ChatGPT的网站弹出了报错警告的信息 然后立即就无法使用了 即使是有特权的plus账户也未能幸免 一时之间呢 chatgptdown的话题在Twitter刷屏 不少重度的用户表示很着急 有的用户说呢没了ChatGPT 这工作…

uniapp打包Android、Ios、微信小程序

首先我们需要在我们的代码中,把我们所要用到的配置信息配置好,在检查一下我们测试的内容是否有打开(取消注释),在检查一下我们的版本信息是否正确,查看一下接口ip是否是正式线 这里的配置信息一定要配置好…

时序分解 | Matlab实现贝叶斯变化点检测与时间序列分解

时序分解 | Matlab实现贝叶斯变化点检测与时间序列分解 目录 时序分解 | Matlab实现贝叶斯变化点检测与时间序列分解效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现贝叶斯变化点检测与时间序列分解 1.Matlab实现贝叶斯变化点检测与时间序列分解,完…

产品经理学习-策略产品指标

目录: 数据指标概述 通用指标介绍 Web端常用指标 移动端常用指标 如何选择一个合适的数据指标 数据指标概述 指标是衡量目标的一个参数,指一项活动中预期达到的指标、目标等,一般用数据表示,因此又称为数据指标;…

python+django在线学习教学辅助作业系统gp6yp

本课题使用Python语言进行开发。基于web,代码层面的操作主要在PyCharm中进行,将系统所使用到的表以及数据存储到MySQL数据库中 技术栈 后端:pythondjango 前端:vue.jselementui 框架:django/flask Python版本:python3.…

【计算机毕业设计】python+django数码电子论坛系统设计与实现

本系统主要包括管理员和用户两个角色组成;主要包括:首页、个人中心、用户管理、分类管理、数码板块管理、数码评价管理、数码论坛管理、畅聊板块管理、系统管理等功能的管理系统。 后端:pythondjango 前端:vue.jselementui 框架&a…

SpringValidation自定义注解以及分组校验

SpringValidation的参数校验使用可参考:【SpringMVC应用篇】Spring Validation 参数校验-CSDN博客 目录 1. 引入依赖 2. 自定义注解校验 2.1 创建Validation类 2.2 创建注解对象 2.3 使用注解 3. 分组校验 3.1 实体类内部定义接口 3.2 在参数上指定分组 1. …

leetcode 315. 计算右侧小于当前元素的个数(hard)【小林优质解法】

链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 代码: class Solution {int[]counts; //用来存储结果int[]index; //用来绑定数据和原下标int[]helpNums; //用于辅助排序 nums 数组int[]helpIndex; //用于辅助排序 i…

学习动态规划不同路径、最小路径和、打家劫舍、打家劫舍iii

学习动态规划|不同路径、最小路径和、打家劫舍、打家劫舍iii 62 不同路径 动态规划,dp[i][j]表示从左上角到(i,j)的路径数量dp[i][j] dp[i-1][j] dp[i][j-1] import java.util.Arrays;/*** 路径数量* 动态规划,dp[i][j]表示从左上角到(i,j)的路径数量…

KG+LLM(一)KnowGPT: Black-Box Knowledge Injection for Large Language Models

论文链接:2023.12-https://arxiv.org/pdf/2312.06185.pdf 1.Background & Motivation 目前生成式的语言模型,如ChatGPT等在通用领域获得了巨大的成功,但在专业领域,由于缺乏相关事实性知识,LLM往往会产生不准确的…