大数据技术发展史

今天我们常说的大数据技术,其实起源于Google在2004年前后发表的三篇论文,也就是我们经常听到的“三驾马车”,分别是分布式文件系统GFS、大数据分布式计算框架MapReduce和NoSQL数据库系统BigTable。

你知道,搜索引擎主要就做两件事情,一个是网页抓取,一个是索引构建,而在这个过程中,有大量的数据需要存储和计算。这“三驾马车”其实就是用来解决这个问题的,你从介绍中也能看出来,一个文件系统、一个计算框架、一个数据库系统。

现在你听到分布式、大数据之类的词,肯定一点儿也不陌生。但你要知道,在2004年那会儿,整个互联网还处于懵懂时代,Google发布的论文实在是让业界为之一振,大家恍然大悟,原来还可以这么玩。

因为那个时间段,大多数公司的关注点其实还是聚焦在单机上,在思考如何提升单机的性能,寻找更贵更好的服务器。而Google的思路是部署一个大规模的服务器集群,通过分布式的方式将海量数据存储在这个集群上,然后利用集群上的所有机器进行数据计算。 这样,Google其实不需要买很多很贵的服务器,它只要把这些普通的机器组织到一起,就非常厉害了。

当时的天才程序员,也是Lucene开源项目的创始人Doug Cutting正在开发开源搜索引擎Nutch,阅读了Google的论文后,他非常兴奋,紧接着就根据论文原理初步实现了类似GFS和MapReduce的功能。

两年后的2006年,Doug Cutting将这些大数据相关的功能从Nutch中分离了出来,然后启动了一个独立的项目专门开发维护大数据技术,这就是后来赫赫有名的Hadoop,主要包括Hadoop分布式文件系统HDFS和大数据计算引擎MapReduce。

当我们回顾软件开发的历史,包括我们自己开发的软件,你会发现,有的软件在开发出来以后无人问津或者寥寥数人使用,这样的软件其实在所有开发出来的软件中占大多数。而有的软件则可能会开创一个行业,每年创造数百亿美元的价值,创造百万计的就业岗位,这些软件曾经是Windows、Linux、Java,而现在这个名单要加上Hadoop的名字。

如果有时间,你可以简单浏览下Hadoop的代码,这个纯用Java编写的软件其实并没有什么高深的技术难点,使用的也都是一些最基础的编程技巧,也没有什么出奇之处,但是它却给社会带来巨大的影响,甚至带动一场深刻的科技革命,推动了人工智能的发展与进步。

我觉得,我们在做软件开发的时候,也可以多思考一下,我们所开发软件的价值点在哪里?真正需要使用软件实现价值的地方在哪里?你应该关注业务、理解业务,有价值导向,用自己的技术为公司创造真正的价值,进而实现自己的人生价值。而不是整天埋头在需求说明文档里,做一个没有思考的代码机器人。

Hadoop发布之后,Yahoo很快就用了起来。大概又过了一年到了2007年,百度和阿里巴巴也开始使用Hadoop进行大数据存储与计算。

2008年,Hadoop正式成为Apache的顶级项目,后来Doug Cutting本人也成为了Apache基金会的主席。自此,Hadoop作为软件开发领域的一颗明星冉冉升起。

同年,专门运营Hadoop的商业公司Cloudera成立,Hadoop得到进一步的商业支持。

这个时候,Yahoo的一些人觉得用MapReduce进行大数据编程太麻烦了,于是便开发了Pig。Pig是一种脚本语言,使用类SQL的语法,开发者可以用Pig脚本描述要对大数据集上进行的操作,Pig经过编译后会生成MapReduce程序,然后在Hadoop上运行。

编写Pig脚本虽然比直接MapReduce编程容易,但是依然需要学习新的脚本语法。于是Facebook又发布了Hive。Hive支持使用SQL语法来进行大数据计算,比如说你可以写个Select语句进行数据查询,然后Hive会把SQL语句转化成MapReduce的计算程序。

这样,熟悉数据库的数据分析师和工程师便可以无门槛地使用大数据进行数据分析和处理了。Hive出现后极大程度地降低了Hadoop的使用难度,迅速得到开发者和企业的追捧。据说,2011年的时候,Facebook大数据平台上运行的作业90%都来源于Hive。

随后,众多Hadoop周边产品开始出现,大数据生态体系逐渐形成,其中包括:专门将关系数据库中的数据导入导出到Hadoop平台的Sqoop;针对大规模日志进行分布式收集、聚合和传输的Flume;MapReduce工作流调度引擎Oozie等。

在Hadoop早期,MapReduce既是一个执行引擎,又是一个资源调度框架,服务器集群的资源调度管理由MapReduce自己完成。但是这样不利于资源复用,也使得MapReduce非常臃肿。于是一个新项目启动了,将MapReduce执行引擎和资源调度分离开来,这就是Yarn。

2012年,Yarn成为一个独立的项目开始运营,随后被各类大数据产品支持,成为大数据平台上最主流的资源调度系统。

同样是在2012年,UC伯克利AMP实验室(Algorithms、Machine和People的缩写)开发的Spark开始崭露头角。当时AMP实验室的马铁博士发现使用MapReduce进行机器学习计算的时候性能非常差,因为机器学习算法通常需要进行很多次的迭代计算,而MapReduce每执行一次Map和Reduce计算都需要重新启动一次作业,带来大量的无谓消耗。还有一点就是MapReduce主要使用磁盘作为存储介质,而2012年的时候,内存已经突破容量和成本限制,成为数据运行过程中主要的存储介质。Spark一经推出,立即受到业界的追捧,并逐步替代MapReduce在企业应用中的地位。

一般说来,像MapReduce、Spark这类计算框架处理的业务场景都被称作批处理计算,因为它们通常针对以“天”为单位产生的数据进行一次计算,然后得到需要的结果,这中间计算需要花费的时间大概是几十分钟甚至更长的时间。因为计算的数据是非在线得到的实时数据,而是历史数据,所以这类计算也被称为大数据离线计算

而在大数据领域,还有另外一类应用场景,它们需要对实时产生的大量数据进行即时计算,比如对于遍布城市的监控摄像头进行人脸识别和嫌犯追踪。这类计算称为大数据流计算,相应地,有Storm、Flink、Spark Streaming等流计算框架来满足此类大数据应用的场景。 流式计算要处理的数据是实时在线产生的数据,所以这类计算也被称为大数据实时计算

在典型的大数据的业务场景下,数据业务最通用的做法是,采用批处理的技术处理历史全量数据,采用流式计算处理实时新增数据。而像Flink这样的计算引擎,可以同时支持流式计算和批处理计算。

除了大数据批处理和流处理,NoSQL系统处理的主要也是大规模海量数据的存储与访问,所以也被归为大数据技术。 NoSQL曾经在2011年左右非常火爆,涌现出HBase、Cassandra等许多优秀的产品,其中HBase是从Hadoop中分离出来的、基于HDFS的NoSQL系统。

我们回顾软件发展的历史会发现,差不多类似功能的软件,它们出现的时间都非常接近,比如Linux和Windows都是在90年代初出现,Java开发中的各类MVC框架也基本都是同期出现,Android和iOS也是前脚后脚问世。2011年前后,各种NoSQL数据库也是层出不穷,我也是在那个时候参与开发了阿里巴巴自己的NoSQL系统。

事物发展有自己的潮流和规律,当你身处潮流之中的时候,要紧紧抓住潮流的机会,想办法脱颖而出,即使没有成功,也会更加洞悉时代的脉搏,收获珍贵的知识和经验。而如果潮流已经退去,这个时候再去往这个方向上努力,只会收获迷茫与压抑,对时代、对自己都没有什么帮助。

但是时代的浪潮犹如海滩上的浪花,总是一浪接着一浪,只要你站在海边,身处这个行业之中,下一个浪潮很快又会到来。你需要敏感而又深刻地去观察,略去那些浮躁的泡沫,抓住真正潮流的机会,奋力一搏,不管成败,都不会遗憾。

正所谓在历史前进的逻辑中前进,在时代发展的潮流中发展。通俗地说,就是要在风口中飞翔。

上面我讲的这些基本上都可以归类为大数据引擎或者大数据框架。而大数据处理的主要应用场景包括数据分析、数据挖掘与机器学习。数据分析主要使用Hive、Spark SQL等SQL引擎完成;数据挖掘与机器学习则有专门的机器学习框架TensorFlow、Mahout以及MLlib等,内置了主要的机器学习和数据挖掘算法。

此外,大数据要存入分布式文件系统(HDFS),要有序调度MapReduce和Spark作业执行,并能把执行结果写入到各个应用系统的数据库中,还需要有一个大数据平台整合所有这些大数据组件和企业应用系统。

在这里插入图片描述
图中的所有这些框架、平台以及相关的算法共同构成了大数据的技术体系,我将会在专栏后面逐个分析,帮你能够对大数据技术原理和应用算法构建起完整的知识体系,进可以专职从事大数据开发,退可以在自己的应用开发中更好地和大数据集成,掌控自己的项目。

结语:

从我的角度而言,不管是学习某门技术,还是讨论某个事情,最好的方式一定不是一头扎到具体细节里,而是应该从时空的角度先了解它的来龙去脉,以及它为什么会演进成为现在的状态。当你深刻理解了这些前因后果之后,再去看现状,就会明朗很多,也能更直接地看到现状背后的本质。说实话,这对于我们理解技术、学习技术而言,同等重要。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/278919.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

js for和forEach 跳出循环 替代方案

1 for循环跳出 for(let i0;i<10;i){if(i5){break;}console.log(i) }在函数中也可以return跳出循环 function fn(){for(let i0;i<10;i){if(i5){return;}console.log(i)} } fn()for ... of效果同上 2 forEach循环跳出 break会报错 [1,2,3,4,5,6,7,8,9,10].forEach(i>…

基于虚拟机ubuntu的linux和shell脚本的学习,以及SSH远程登陆实战

简介 特点 是一款操作系统,跟windows,macos一样,有下面的特点 简单和高效,一切皆文件,所有配置都通过修改文件解决,不需要繁琐的权限和设置 权限高,把所有细节都交给用户,可完全自定义 安全,所有程序只有自己执行才会启动 分类 1、debian系主要有Debian&#xff0c;Ubun…

出海合规云安全,AWS Landing Zone解决方案建立安全着陆区

在出海的大环境中&#xff0c;企业数字化转型的趋势之一就是上云。然而&#xff0c;上云也带来了新的挑战&#xff0c;特别是对企业的 IT 建设和管理提出了更高的要求。为了构建一个安全合规的云上信息系统环境&#xff0c;满足企业中不同用户的快速增长、资源访问可控、成本可…

Selenium在vue框架下求生存

vue框架下面&#xff0c;没有id、没有name&#xff0c;vue帮开发做了很多脏活累活&#xff0c;却委屈了写页面自动化测试的人&#xff08;当然&#xff0c;也给爬信息的也带来了一定的难处&#xff09;。这里只能靠总结&#xff0c;用一些歪门邪道&#xff1a; 一、跟开发商量…

三台CentOS7.6虚拟机搭建Hadoop完全分布式集群(二)

这个是笔者大学时期的大数据课程使用三台CentOS7.6虚拟机搭建完全分布式集群的案例&#xff0c;已成功搭建完全分布式集群&#xff0c;并测试跑实例。 6.安装JDK 以下操作现在master上操作&#xff0c;然后远程复制到slave01、slave02即可。 6.1 将压缩包发送到master节点机…

【连接池】-从源码到适配(下),使用dynamic-datasource导致连接池没生效(升级版本)

写在前面 书接上文&#xff0c;连接池没生效&#xff0c;启用了一个什么默认的连接池。具体是什么&#xff0c;一起来看看源码吧。 目录 写在前面一、问题描述二、本地调试三、升级dynamic-datasource四、新的问题&#xff08;一&#xff09;数据源初始化问题&#xff08;二&am…

【nodejs】前后端身份认证

前后端身份认证 一、web开发模式 服务器渲染&#xff0c;前后端分离。 不同开发模式下的身份认证&#xff1a; 服务端渲染推荐使用Session认证机制前后端分离推荐使用JWT认证机制 二、session认证机制 1.HTTP协议的无状态性 了解HTTP协议的无状态性是进一步学习Session认…

Vue2+element-ui 实现select选择器结合Tree树形控件实现下拉树效果

效果&#xff1a; DOM部分 &#xff1a; // 设置el-option隐藏的下拉选项&#xff0c;选项显示的是汉字label&#xff0c;值是value // 如果不设置一个下拉选项&#xff0c;下面的树形组件将无法正常使用 <el-form-item label"报警区域" prop"monitorId"…

Spring Boot 基于Redisson实现注解式分布式锁

依赖版本 JDK 17 Spring Boot 3.2.0 Redisson 3.25.0 源码地址&#xff1a;Gitee 导入依赖 <properties><redisson.version>3.25.0</redisson.version> </properties><dependencies><dependency><groupId>org.projectlombok</…

Linux 安装Jupyter notebook 并开启远程访问

文章目录 安装Python安装pip安装Jupyter启动Jupyter Notebook1. 生成配置文件2. 创建密码3. 修改jupyter notebook的配置文件4. 启动jupyter notebook5. 远程访问jupyter notebook 安装Python 确保你的系统上已经安装了Python。大多数Linux发行版都预装了Python。你可以在终端…

QT/C++ 远程数据采集上位机+服务器

一、项目介绍&#xff1a; 远程数据采集与传输 课题要求:编写个基于TCP的网络数据获取与传输的应用程序; 该程序具备以下功能: 1)本地端程序够通过串口与下位机(单片机)进行通信&#xff0c;实现数据采集任务 2)本地端程序能将所获取下位机数据进行保存(如csv文本格式等); 3…

[ 云计算 | AWS ] 对比分析:Amazon SNS 与 SQS 消息服务的异同与选择

文章目录 一、前言二、Amazon SNS 服务&#xff08;Amazon Simple Notification Service&#xff09;三、Amazon SQS 服务&#xff08;Amazon Simple Queue Service&#xff09;四、SNS 与 SQS 的区别&#xff08;本文重点&#xff09;4.1 基于推送和轮询区别4.2 消费者数量对应…

【教学类-43-04】20231229 N宫格数独4.0(n=2,4,6,8) (ChatGPT AI对话大师生成 回溯算法)

作品展示&#xff1a; 背景需求&#xff1a; 幼儿表示自己适合做5宫格 第一次AI生成九宫格数独python代码 【教学类-43-03】20231229 N宫格数独3.0&#xff08;n1、2、3、4、6、8、9&#xff09; &#xff08;ChatGPT AI对话大师生成&#xff09;-CSDN博客文章浏览阅读162次&…

Python武器库开发-武器库篇之上传本地仓库到Git(三十八)

武器库篇之上传本地仓库到Git(三十八) 当我们在Git中创建远程仓库和进行了SSH key免密登陆之后&#xff0c;我们点击 Your respositories 可以查看我们所创建的远程仓库&#xff0c;如图所示&#xff1a; 如果我们需要将本地的仓库上传到Git&#xff0c;首先我们需要建立一个本…

nodeJS搭建免费代理IP池爬取贴吧图片实战

之前用python写过爬虫&#xff0c;这次想试试nodeJS爬虫爬取贴吧图片&#xff0c;话不多说代码如下&#xff0c;爬取制定吧的前十页所有帖子里的图片 爬取贴吧图片脚本 你得提前创建一个images文件夹 const axios require("axios"); const cheerio require("…

Spark应用程序的结构与驱动程序

Apache Spark是一个强大的分布式计算框架&#xff0c;用于处理大规模数据。了解Spark应用程序的结构和驱动程序是构建高效应用的关键。本文将深入探讨Spark应用程序的组成部分&#xff0c;以及如何编写一个Spark驱动程序来处理数据和执行计算。 Spark应用程序的结构 Spark应用…

vue3项目使用pako库解压后端返回zip数据

文章目录 前言一、pako 介绍一些特点和功能&#xff1a;简单示例 二、vue3 实战示例1.安装后引入库安装:引用用自定义hooks 抽取共用逻辑部署小插曲 前言 外部接口返回一个图片数据是经过zip压缩的&#xff0c;前端需要把这个数据处理成可以显示的图片。大概思路&#xff1a;z…

LTPI协议的理解——2、LTPI实现的底层架构

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 LTPI协议的理解——2、LTPI实现的底层架构 前言一、体系结构三、实现细节四、物理接口信号传输方法总结 前言 前面讲了LTPI的定义和大概结构&#xff0c;接下来继续理解LTPI…

封装uniapp签字板

新开发的业务涉及到签字功能&#xff0c;由于是动态的表单&#xff0c;无法确定它会出现在哪里&#xff0c;不得已封装模块。 其中涉及到一个难点就是this的指向性问题&#xff0c; 第二个是微信小程序写法&#xff0c; 我这个写法里用了u-view的写法&#xff0c;可以自己修改组…

PiflowX组件-ReadFromKafka

ReadFromKafka组件 组件说明 从kafka中读取数据。 计算引擎 flink 有界性 Unbounded 组件分组 kafka 端口 Inport&#xff1a;默认端口 outport&#xff1a;默认端口 组件属性 名称展示名称默认值允许值是否必填描述例子kafka_hostKAFKA_HOST“”无是逗号分隔的Ka…